
Multi-Instance Transfer Learning on T cell

receptor LLMs for Cancer Prediction

Rudy C. Yuen 1

Department of Computer Science

Faculty of Engineering Sciences

Supervisors

Professor Benny Chain, Yuta Nagano

Division of Infection & Immunology

Faculty of Medical Sciences

Professor John Shawe-Taylor

Department of Computer Science

Faculty of Engineering Sciences

Submission Date: 18th April, 2024

1Disclaimer: This report is submitted as part requirement for Master of Engineering in Mathematical
Computation at UCL. It is substantially the result of my own work except where explicitly indicated in
the text. The report may be freely copied and distributed provided the source is explicitly acknowledged.

Acknowledgements

First and foremost, I would like to thank my family for their financial and mental support through-

out my academic journey. It would not have been possible for me to become who I am now without

all your nurture. In particular, I thank my grandfather for motivating me to complete this project.

My most sincere gratitude goes to my supervisors, Yuta Nagano, Benny Chain, and John Shawe-

Taylor, for their endless support and teachings during the project. I cannot be more thankful

for your patience in teaching me the immunology and machine learning concepts that I needed to

complete this project, as well as for going through this manuscript and providing valuable insights

into areas of improvement. Your support has made the journey of my project immensely enjoyable

and fruitful.

I would also like to thank all my peers who provided insights and ideas into this project.

Lastly, I thank all the patients who voluntarily provided valuable data towards this research.

Without your generosity, this project would not have been possible.

Abstract

In the early stages of cancer, T cells undergo proliferation as part of an immune response to

eradicate cancer. Thus, tracking peripheral T cells in asymptomatic patients for early cancer

prediction is possible. Previous attempts at constructing such a model represent T cell receptors

(TCRs) numerically using physico-chemical properties and pairing with downstream classification

algorithms. We argue that the accuracy can be improved when TCR representations are learnt

using a pre-trained language model as language models create numerical representations for TCRs

based on the amino acid sequence, whereas physico-chemical properties only encode TCRs based

on individual amino acids.

This article classifies symptomatic lung cancer patients from the TRACERx dataset and con-

trol patients to demonstrate that the output embeddings from pre-trained large protein language

models are more expressive than physico-chemical properties. Using these pre-trained language

model embeddings, we can achieve high classification performance between cancer and non-cancer

repertoires, achieving 100% AUC on the test and evaluation set using a simple two-layered multi-

instanced downstream classifier. Our results also propose that embeddings from language models

are more expressive than physico-chemical properties in cancer prediction.

Contents

1 Executive Summary 1

2 Introduction 3

2.1 T Cells . 3

2.2 Representing T Cells Numerically . 4

2.3 Research Aims . 5

2.4 Report Structure . 5

3 Context & Related Works 7

3.1 The Protein Language . 7

3.2 TCR Sequence Frequency Analysis . 8

3.3 Deep Learning on Physico-Chemical Properties . 9

3.3.1 MINN-SA . 10

3.4 Transfer Learning . 12

3.4.1 Domain Mismatch . 12

3.4.2 Pre-Trained Models . 12

3.4.3 TCR-BERT . 13

4 Methodology & Results 16

4.1 Data Processing . 17

4.1.1 Training data . 17

4.1.2 Data Cleaning . 18

4.1.3 SCEPTR . 18

4.1.4 Symbolic Encodings . 19

4.1.5 Subsymbolic Encoding . 19

4.2 Model Design . 21

4.2.1 Subsymbolic Encoding Downstream Model 22

4.2.2 Symbolic Encoding Downstream Model . 23

4.3 Experimental Layout . 24

4.3.1 Training Environment . 24

4.3.2 Hyperparameters . 24

4.4 Results . 25

4.4.1 Evaluation Set . 26

5 Discussion 27

1

5.1 Achievements . 27

5.1.1 Symbolic Encoding’s Lack of Expressivity 27

5.1.2 Novelty . 29

5.2 Interpretability . 30

5.2.1 Predictive T Cell Receptors . 31

5.2.2 Component Similarity . 32

5.3 Limitations . 33

5.3.1 Data Limitations . 33

5.3.2 Quality of Embedding Space . 34

5.3.3 Computational Resources . 34

5.4 Future Works . 34

5.4.1 Fine Tuning Encoding Models . 35

5.4.2 Patient Data . 36

5.4.3 Model Verification . 36

5.4.4 Usage of TCR-BERT . 37

5.4.5 Autoencoders for symbolic encodings . 39

6 Conclusions 40

6.1 Summary of Achievements . 40

6.2 Summary of Future Works . 41

A Figures & Tables 43

A.1 Train-Test Split . 43

A.1.1 TCR-BERT . 44

A.1.2 SCEPTR . 47

A.1.3 Atchley Factors . 50

A.1.4 Kidera Factors . 53

A.1.5 Amino Acid Properties . 56

A.1.6 Random Embedding . 59

A.2 Evaluation Set (SCEPTR) . 62

A.3 Interpretability . 63

A.3.1 Positively Predictive TCRs . 63

A.3.2 Negatively Predictive TCRs . 64

A.3.3 Similarity . 68

B GitHub Repository 70

Bibliography 71

2

Chapter 1

Executive Summary

T cells play an essential role in the adaptive immune system. Their receptors bind to foreign

antigens, causing an immune response during an invasion. One response includes proliferation,

where the T cell receptor (TCR) concentration in blood increases to eradicate invaders. Therefore,

a conjecture is presented: the increased concentration of this receptor also increases the probability

of sampling a cancer-targeting TCR. Thus, analysing T cells circulating in the blood can provide

insight into the invaders in the human when the blood is sampled.

Given this conjecture, many researchers model TCRs to understand their specificity and aim to

identify diseases in an asymptomatic patient. TCRs are proteins which can be expressed as a

string of amino acids. Hence, to represent TCRs numerically, many research use amino acids’

physico-chemical properties to encode TCRs numerically. They mainly use Atchley factors, a se-

ries of numbers that specifies the physico-chemical properties of amino acids, such as polarity,

secondary structure, molecular volume, codon diversity and electrostatic charge. Other usable

physico-chemical properties include Amino Acid Properties and Kidera Factors, which model dif-

ferent properties of amino acids.

We define symbolic encoding as a means of representing TCRs numerically. Symbolic encodings

encode each amino acid in the TCR with a high-level meaning, such as with physico-chemical

properties. However, we hypothesise that this symbolic means of representing T cells numerically

can be improved through subsymbolic methods. Subsymbolic Methods refer to encoding TCRs

using pre-trained language models’ embedding spaces.

This hypothesis originates from the fact that physico-chemical encodings are not specific to TCRs.

These encodings are generalised methods of encoding amino acids into numerical variants. Physico-

chemical properties are also unable to consider neighbouring TCRs to create an embedding.

On the other hand, pre-trained language models generate a TCR-specific embedding space through

prior information. The generated embeddings would also consider neighbouring amino acids within

the same TCR. Hence, we believe that LLMs can assign spatial locality to similar TCRs, effectively

reducing the difficulty of classifiers in learning about TCR repertoires and cancer.

We test our hypothesis by applying transfer learning on two large language models pre-trained on

TCR sequences. For robustness, we did not fine-tune parameters within the two large language

models; instead, we trained a simple two-layered downstream model using the language models’

1

output embeddings to identify whether a patient has cancer. The two pre-trained large language

models will be TCR-BERT, which is pre-trained on masked amino acid modelling on CDR3s, and

SCEPTR, an in-house yet-to-be-published model significantly smaller than TCR-BERT. SCEPTR

is trained on masked amino acid modelling followed by auto-contrastive learning.

Our data are T cell receptors sampled from a blood draw for both the control and positive classes.

The control class comes from two different studies, and we only use data before experimental

intervention; the positive class is the TRACERx Dataset, which contains TCR sequences sampled

from patients clinically diagnosed with NSCLC Stage I to IIIa. These patients are clinically

diagnosed through a body check after exhibiting symptoms.

Since the amount of T cell receptors in each blood draw is not fixed, we apply a multiple-instance

learning approach to our learning problem. Our methodology involves one scoring layer, which

scores each TCR and subsequently assigns sparse attention to each TCR to obtain weights for each

TCR amino acid sequence. We compute a weighted sum using these weights to get a repertoire

representing vector. A binary classification on this repertoire representing vector is utilised to find

the probability of cancer. The proposed classifier has two linear layers, demonstrating that even

such a simple model can identify cancer patients accurately.

The classifier is trained on both TCR alpha and beta chain CDR3 sequences, and we obtain

good classification performance on the model that uses SCEPTR’s embeddings. In line with our

hypothesis, SCEPTR’s downstream classifiers perform better than models that encode TCRs using

their physico-chemical amino acid properties.

Since TCR-BERT’s embedding space is too high-dimensional, we do not have enough patient

samples to train TCR-BERT’s downstream classifier to mitigate the risk of overfitting. Hence, we

focused on SCEPTR’s downstream model, which gave an impressive performance of a maximum

AUC of 100% on both the test and evaluation set, with a maximum AUC of 97.8% on the training

set.

We have also studied one of the best-performing downstream models that used SCEPTR’s embed-

dings. This model identified public TCRB sequences and expanded them within the evaluation

set.

To take our research forward, we proposed methods to fine-tune the language models so the em-

bedding space will be arranged by TCR specificity. Several other extensions to this task have also

been introduced to improve the accuracy of identifying cancer with TCRs, and better evaluate

whether symbolic encodings are less expressive than subsymbolic encodings.

2

Chapter 2

Introduction

Cancer is caused by mutations that cause cells to divide uncontrollably, consequentially creating a

tumour of malfunctioned cells that disrupt ordinary operations in the body. Although cancer cells

are recognised as immunologically foreign, cancer is tough to eradicate naturally as they create

a protective environment on themselves that suppresses immune responses [1] such as apoptosis

resistance [2]. This disease is responsible for every sixth death worldwide [3], which demonstrates

its destructiveness.

Identifying early-stage cancer has been shown to increase survival rates significantly [4]. Yet,

tumours are small during the early stages of cancer and typically will not spread around the body.

This causes the patient to exhibit minimal symptoms or be completely asymptomatic, making it

hard for patients or physicians to spot it.

With technological advancements and research into machine learning (ML), it has been demon-

strated that ML can learn complicated patterns in many fields, such as biology [5]. Given its cheap

cost to deploy instead of laboratory experiments, there is plenty of ongoing research to apply ML

to early cancer diagnosis [6].

The promise in the future of deploying ML in clinical settings has been demonstrated through

its success in detecting cancer [7, 8, 9]. Current state-of-the-art Machine Learning techniques

for cancer detection samples patients’ data through non-invasive means, such as Liquid Biopsy

[10, 11, 12] and Medical Image Segmentation [13, 14].

2.1 T Cells

Recently, the topic of using T cell receptors (TCRs) to detect cancer has been brought up [15]. T

cells are immune cells that are part of the adaptive immune system; they orchestrate immunological

responses to detect foreign agents such as viruses, bacteria, or cancer cells. Ordinarily, T cells

circulate the body to seek a foreign antigen that their receptor can bind to [16]. These foreign

antigens are often found on infected or diseased cells or foreign cells such as bacteria.

The majority of T cells carry antigen receptors made up of two chains, alpha and beta chains, on

their receptors. Each chain contains 3 Complementarily-Determining Regions (CDR1, 2 and 3),

which determine the T cell’s specificity. TCRs are formed from a V(D)J Recombination Process,

3

a stochastic process. This process generates many T cell receptors, consequently enabling them to

gain a wide range of specificities, allowing the T cell system to be able to target all possible foreign

antigens [17].

Once a TCR successfully binds to an antigen or a peptide presented on a human cell’s Major His-

tocompatibility Complex, the T cell proliferates exponentially. This will consequentially increase

the concentration of the TCR with the same specificity in blood, implying that these activated

TCRs are more likely to be sampled [18].

Thus, it has been hypothesised that, by analysing the set of T cells circulating in the blood, we

can gain an insight into the human’s functional state at the time of the blood draw. For example,

we can learn whether the patient has cancer or is under an incubation period for a disease [19].

The complexity of understanding the functionality of any specific TCR is due to cross-reactivity,

which states that one TCR can target several antigens, and multiple TCRs can recognise one

antigen. Generally, the TCR that binds to the same antigen between two individuals will not be

identical [20]. However, there has been some evidence which suggests that these two TCRs should

be similar in their amino acid sequences [20, 21].

In cancer, this process is further complicated as mutations in cancer cells are not specific enough

to guarantee that the antigens hosted on cancer cells are identical. Since there are variations with

the cancer cells’ presenting antigen, the TCR that binds to it will, therefore, be different [21].

However, there may be similarities within these TCRs amongst different patients; there have been

some research attempts in analysing TCRs computationally, demonstrating a possibility of using

TCRs to identify cancer in an asymptomatic patient [15, 22, 23].

2.2 Representing T Cells Numerically

T cells can be sampled from any part of the body. Within each T cell, there are typically many

TCRs, each comprising 3 Complementary Determining Regions (CDR): CDR1, CDR2, and CDR3.

Each of these can be represented by amino acids, which are strings.

To utilise TCRs to infer the patient’s condition using a mathematical model, past literature has at-

tempted to represent TCRs amino acid sequences numerically using meaningful quantifiers [23, 24],

which we refer to as a symbolic encoding in this article since each number in this encoding carries

a human-understandable meaning, for example, pH. These symbolic encoding methods include

Atchley Factors [25], which quantifies amino acids based on five physico-chemical properties, as

well as other symbolic encoding methods, including Kidera factors [26] and amino acids properties

[27].

Whilst symbolic means to quantify TCRs, such as Atchley Factors, can encapsulate amino acids’

physical and chemical properties, we argue that they cannot inform the computational model with

more profound information about the TCR. These physico-chemical properties do not incorporate

any information specific to TCRs but properties that apply to all amino acids. Furthermore, using

physico-chemical properties to encode TCRs does not capture any interactions and dependencies

between amino acids, whereby the symbolic numerical representation for a particular amino acid

will be the same irrespective of where it is placed within the sequence.

In contrast, large language models (LLMs) can overcome these problems. LLMs encode each amino

4

acid depending on its structure; therefore, the embedding for one amino acid sequence depends

on where each amino acid is placed in the sequence. This is typically referred to as context-based

embedding.

Suppose we have an LLM trained with TCRs. In that case, it will capture intrinsic properties

within the TCR, generating a context-based embedding specific to the TCR instead of a universal

embedding across all amino acids. We denote representing TCRs numerically using LLM’s output

embeddings as a subsymbolic encoding since each value within the vector that represents the TCR

does not carry a human-understandable meaning about the TCR.

We propose using a pre-trained model instead of an LLM trained from scratch for cancer identi-

fication using TCRs. This is motivated by the observation that most previous works using TCRs

to predict cancer do not pre-train their model with proteins or TCRs.

We assume that it is possible to create a meaningful subsymbolic encoding space for TCRs using

LLMs, as it is a well-known fact that proteins exhibit a grammatical structure [28, 29, 30]. A

similar study with T and B cell receptors has also used a subsymbolic encoding in one of their

ensemble models to infer whether a patient has COVID-19, Lupus or HIV [31]. This subsymbolic

encoding has achieved an 88.1% AUC and 71% accuracy in this multiclass classification prob-

lem, demonstrating that using subsymbolic encoding can be a promising methodology in a binary

classification problem.

2.3 Research Aims

In this literature, we demonstrate with novelty that representing TCRs numerically subsymbolically

through the use of TCR-BERT [32] and an in-house model SCEPTR, two different pre-trained large

language models, can give a significantly better performance than symbolic encoding such as Kidera

factors [26], Atchley factors [25] and Amino Acid Properties [27].

To show robustness, TCR-BERT and SCEPTR were never trained with disease specificity, and the

dataset used to train them is unrelated to the dataset used in this literature. Therefore, the two

encoding models’ output embedding is unlikely to carry information about the disease specificity

but just about the TCR. TCR-BERT was pre-trained on masked amino acid prediction on T cell

CDR3 sequences. In contrast, SCEPTR is a BERT-based model pre-trained on V call sequences

and CDR3 sequences from the alpha and beta chain using masked language modelling followed by

auto-contrastive learning.

Since we argue that subsymbolic encoding provides a better quantification on T cells, we will freeze

the encoding models and demonstrate that we can still obtain a higher performance score than

symbolic encoding on a simple model. We measure classification performance by the Area Under

the Receiver Operating Characteristic Curve (AUC).

2.4 Report Structure

This report is structured as follows:

In Chapter 3, we first demonstrate an identifiable difference between healthy patients’ and cancer

patients’ TCR repertoires through an approach known as TCR Frequency Analysis. We then

5

review current state-of-the-art approaches to predicting cancer by analysing TCR repertoires, and

reviewing their weaknesses. We will also prove that proteins exhibit a grammatical structure and

study TCR-BERT, a TCR Large Language Model.

Taking on Chapter 3’s findings, we formulate a formal methodology in Chapter 4 that uses TCR

Repertoires to predict cancer. We will also describe our experiment, which aims to show that

subsymbolic encoding is more expressive than symbolic encoding. We then provide results from a

simple model on each type of encoding.

In Chapter 5, we analyse the results obtained from the models in Chapter 4 and whether our

results can shed light on our experimental hypothesis. Subsequently, we discuss weaknesses in our

approach. We also look for areas of improvement in our current approach and provide guides on

future work. We will also argue our models’ robustness by interpreting the model and knowing to

what extent the model has learnt this biological problem.

Chapter 6 concludes the report, summarising all our findings, limitations and future work.

The Executive Summary provides a technical summary with a more thorough project overview.

6

Chapter 3

Context & Related Works

To argue that it is possible to create a generalisable model that uses T cell receptors (TCRs)

to predict cancer, we first demonstrate that amino acids, the building blocks of TCRs, exhibit a

grammatical structure through literature that uses large language models to model proteins. This

indicates that a linguistic approach to understanding TCRs is reasonable.

We then review literature using a motif-based approach, showing a distinguishable difference be-

tween healthy and cancer patients’ TCR repertoires.

Subsequently, we study literature that uses machine learning to accomplish a similar task. All of

these literature creates vectors that rigidly represent TCRs through physico-chemical properties.

Although we argue that this representation is ineffective, we aim to learn about their approaches

and how we could create a model that generalises this problem through language model embeddings.

Then, we will study transfer learning as an approach to classifying TCRs. This approach is

promising because pre-trained models have already understood the underlying problem. We focus

on TCR-BERT, a large language model pre-trained on TCR. Accompanied with what we argued

about proteins exhibiting a language, this provides a comprehensive view of why using output

embeddings from large language models to represent T cells numerically is a promising methodology

for cancer prediction.

3.1 The Protein Language

Amino acids are the fundamental building block for TCRs. There are 20 different amino acids

in the human body, and each amino acid is often referred to by 1 of the 26 English alphabets

by biologists for convenience [28, 33]. For example, one TCR CDR3 amino acid sequence can be

expressed as a string like ‘CASRGLTGNYGYTF’.

A contiguous set of a few amino acids is referred to as a motif, which compares to a word in

English. In [28], the authors used SentencePiece [34] to tokenise amino acids to find frequently

occurring motifs in cancer patients’ TCRs. It has been found that most motifs have sizes from 2

amino acids to 16, with most motifs being seven amino acids long. Although proteins operate in

a three-dimensional space [35, 36] with contrast that languages are one-dimensional, there have

7

been successful previous works that discard this three-dimensional structure by using conventional

large language models to model the protein language.

For example, ProGen was trained in [29]. ProGen is a large language model that is trained to

generate synthetic proteins. Upon fine-tuning, the generated proteins showed similar catalytic

efficiencies as natural proteins. Yet, the generated protein showed only 34.1% similarity against

their natural counterparts. This shows that proteins have an underlying language-like structure,

as proteins can be synthetically generated through ProGen, a language model.

On the other hand, ProGPT-2 was proposed in [30]. ProGPT-2 is a deep unsupervised protein

language model. This model can generate proteins with natural amino acid propensities but are

distantly related to the natural ones sampled. The generated protein’s topology is also not captured

in databases that store naturally occurring protein structures. This further proves that proteins

exhibit a language-like structure that is learnable by LLMs.

3.2 TCR Sequence Frequency Analysis

T cells mediate immune responses through binding onto foreign antigens that their receptor permits

[16]. T cell receptors (TCRs) are produced in the thymus through a stochastic process called the

Variable (V) Diversity (D) and Joining (J) Recombination. This produces a large population

of distinct TCRs, enabling them to target all possible foreign antigens [17]. Each human hosts

different sets of TCRs, and it has been shown that under the same immunological stimulus by the

same antigen, the TCRs within different humans that target the same antigen will be different yet

similar [20, 21].

When a foreign antigen is bound successfully, the T cell will proliferate, increasing the population

of T cells of that specificity in the body. Proliferated T cells also differentiate to acquire various

functions. Differentiated CD4 T cells are primarily involved in amplifying other types of immune

cells, whereas differentiated CD8 T cells kill the target cells they recognise [18]. Although prolifer-

ation and differentiation mainly occur in tissues, T cells migrate around the body in blood to seek

these foreign cells that may have spread around the body [37].

Hence, we can sample and measure peripheral TCRs stimulated by antigen exposure, telling us

about the type of attack the body is under when the blood is sampled. TCRs have been hypothe-

sised to be an indicator of the human’s immune system’s current state, such as whether the body

is under any attack or if there are cancer cells inside the body [19].

To provide evidence for this hypothesis, studies analyse differences in TCRs’ motifs occurrences

within a TCR repertoire for patients under the same immunological stimulus against a control

group. Since TCRs exhibit a grammatical structure as they comprise amino acids, it is sensible to

analyse this difference linguistically through analysing motifs. This approach is often referred to

as TCR Frequency Analysis.

One such study is [38], which measures the difference in the frequency of different CD4+ TCRs in

mice that are immunised against Mycobacterium tuberculosis and those that are not. It has been

discovered that SVM, a supervised learning technique and Hierarchical Clustering, an unsupervised

learning technique, would both yield 100% efficiency in categorising TCR repertoires between

immunised and unimmunised mice. This shows a significant difference between the two populations’

8

TCR repertoires. Although this study is not related to cancer, this study shows that there is a

causal link between immune stimulus and a change in motif frequency within TCR repertoires.

Such studies imply that it might be possible to use TCRs to predict cancer since cancer stimulates

an immune response. To further investigate the difference in motifs within TCR repertoires from

cancer patients and control subjects, SentencePiece, a language-independent sub-word tokenizer

[34] was used in [28] to generate tokens from TCR sequences. These tokens are created based on

their occurrence frequency inside the repertoire; the tokenizer under the study was trained in an

environment with minimal restrictions to identify tokens that can best represent the TCR sequence

of any length. Sixteen motifs are identified within the TRACERx Lung Cancer Dataset [39] which

are enriched in cancer patients compared to healthy patients.

However, TCR frequency analysis cannot conclude a generalisable relationship for cancer detection.

The T cell system is a highly variable system within each individual; therefore, using TCR frequency

analysis to generate a look-up table is ineffective. The differences in each human’s T cell system

further highlight the ineffectiveness of this approach, where this difference can originate from

factors such as ethnicity, immune history and HLA types [20, 40].

Whilst TCR frequency analysis can demonstrate that there is a difference between cancer patients

and control patients’ TCR repertoires, it is analogous to comment on the use of TCR frequency

analysis to classify whether a patient has cancer as classifying whether an email is workplace-

appropriate by reviewing the sender’s sitting posture.

3.3 Deep Learning on Physico-Chemical Properties

Since TCR Frequency Analysis is insufficient to predict cancer, deep learning methods have been

used to predict cancer with TCRs. Deep learning is used as it has been demonstrated to cap-

ture complicated relationships [41, 42], which is what we need to uncover relationships between

TCR repertoires and cancer. Amongst all current works, TCRs have been encoded using physico-

chemical properties to the best of our knowledge.

These physico-chemical properties are derived from the amino acid index [43]. This index contains

at least 566 amino acid indices that one can choose from, yet many are highly correlated and

contain redundant information [24]. There have been several efforts to reduce the dimensionality

of the amino acid index so we can use fewer numbers to represent amino acids whilst maintaining

the majority of the information that best represents them. For example, the Kidera factor is a

table of 10 features extracted from 188 amino acid indices [26], and the Atchley factors are a table

of 5 factors using a series of techniques [25].

Using these methodologies to represent amino acids numerically, DeepCAT is one of the earliest

studies to predict cancer using TCR repertoires. The authors used Convolutional Neural Networks

to predict cancer. They have achieved an AUC of > 0.95 [15] after representing TCRs numeri-

cally with the Amino Acid Index [43]. The authors of the article found this AUC statistic to be

unexpected. We believe that this could be explained through the training paradigm; it can be

seen from Figure 3.1 that the sampling methodology of TCR sequences from cancer and healthy

patients are different, which suggests a chance that the model has overfitted to classify between

the two sampling methods, rather than the true relationship between TCR repertoires from cancer

patients and control patients.

9

Figure 3.1: DeepCAT Training Paradigm [15]

On the other hand, in [22], the authors used blood TCRs from 146 patients, where they are

either pathologically confirmed with Stage 1 lung cancer or non-cancer controls to train a Logistic

Regression model. The authors used 28 samples in the training set and the remaining as the

test set. The trained model had a significant discrepancy in the training and testing AUC, where

they are 0.8 and 0.91, respectively. The training AUC of 0.8 for a binary classification problem is

relatively low, so the reported model’s training and testing data split might have placed the easier

samples in the test set, or the model attained this high test AUC by chance. It is not convincing

that this logistic regression model can generalise the problem since we would expect an optimally

fitted model to have a similar, if not better, train AUC than test AUC.

In [24], the authors attempted to understand the difference between TCR CDR3 motifs from a

tumour tissue and a healthy tissue within the same organ from the same patient. Through the

analysis of X-ray crystallographic structures of human TCRs bound to peptide-MHC hosted on

cancer cells, the authors located the amino acids within the TCR beta chain CDR3s involved

in binding. Subsequently, the authors encoded four amino acids within TCRs at a time using

the Atchley factors [25] and studied the importance of each factor within the Atchley factors for

identifying cancer using a logistic regression model. The trained logistic regression model had

a k-fold cross-validation classification accuracy of 93% and 94% for colorectal and breast cancer,

respectively. This paper demonstrates that using these physico-chemical properties, such as Atchley

factors, without any transformation could uncover certain information regarding TCR repertoires.

3.3.1 MINN-SA

With the appreciation that any machine learning algorithms used to tackle medical problems would

need to be explainable, MINN-SA [23] has been designed to improve the explainability of models

that are used to predict cancer with TCRs by using sparse attention to isolate the TCRs that

might have a cancer specificity from those that are unrelated.

The authors represented each amino acid within a TCR CDR3 sequence numerically using the

Atchley factors [25], where they obtain an Atchley Matrix for the CDR3 sequence, with each

10

column representing one amino acid within the CDR3 sequence. They transform this matrix using

a pre-trained autoencoder model, TESSA [44], to create a 30-dimensional vector for each TCR

sequence.

MINN-SA is a multiple-instance learning algorithm because TCR datasets are arranged in reper-

toires, where each repertoire contains a different amount of TCRs. Within the repertoire, we will

have a label to indicate whether the repertoire comes from a cancer or a healthy patient rather than

whether each TCR targets cancer antigens. This dataset structure is due to the practical impossi-

bility of labelling the specificity of individual TCRs as TCRs are known for their cross-reactivity,

which states that TCRs can potentially recognise more than one antigen [45].

MINN-SA tackled this multiple-instance learning problem by using a weighted sum across all TCRs

within the repertoire to create a repertoire representing vector, also known as the bag representing

vector. The weights for this sum are computed using the Sparsemax activation function [46], which

is a variant of softmax; instead of having small probabilities for irrelevant instances, sparsemax

assigns 0. Algorithm 4.2.1 is a pseudocode for the sparsemax algorithm.

The benefit of using sparsemax over softmax has been fully demonstrated within the weighted sum.

Softmax cannot output a zero probability, where this non-zero probability for irrelevant TCRs will

obscure the signal in the weighted sum process. On the other hand, since Sparsemax can output

a zero probability, it amplifies the signal for relevant TCRs within the bag-representing vector, as

irrelevant TCRs will not be involved within the sum. Hence, all vectors in the weighted sum will

be related to the classification label.

Using sparsemax increases the sparsity of the probability distribution generated, increases the

computation speed, and improves explainability. This is due to sparsemax’s ability to distinguish

the instances that matter and those that do not. In a trained model, it is expected that TCRs

related to cancer will be assigned a non-zero probability, whereas the irrelevant instances will be

assigned a zero probability. This increases the interpretability of the model, as we can now see

which instances are deemed important by the model. Therefore, we can explain what the model has

learnt. We can also track if the model’s knowledge aligns with what we know about the problem.

In MINN-SA, TESSA processes the Atchley matrices for each CDR3 sequence into 30-dimensional

vectors, which are then passed into the deep network to obtain the components within the weighted

sum. The processed vectors and weights from sparsemax will be used to compute a weighted sum.

The result from the sum creates a bag-representing vector, which is then classified by a classifying

network to form a probability of whether the patient has cancer.

MINN-SA gave 0.744 and 0.818 in AUC as the median of 10-fold cross-validation on ten types

of cancer in balanced and imbalanced data scenarios, respectively. This AUC performance might

originate from the authors’ lack of data in this study. Therefore, MINN-SA is prone to overfit-

ting, as the deep network that creates the high-level feature vector contains much more trainable

parameters than the number of labels.

Although it is not convincing that MINN-SA has generalised the relationship between cancer and

non-cancer patients by evaluating the AUC, many features within MINN-SA stand out. We believe

using sparsemax and the weighted sum is an important aspect that could be learnt from MINN-SA.

11

3.4 Transfer Learning

To highlight the importance of using transfer learning, let’s consider a newborn, ‘Timmy’, a des-

tined radiologist. For Timmy to progress in his destined career, he must learn Biology, earn a

medical degree, and pass his residency to progress in his destined career. If we ignore licensing, it

is not impossible for Timmy to be a radiologist by teaching him the sorts of MRIs that correspond

to cancer since birth without first teaching him biology or studying medicine in university. If we

assume that eventually, Timmy can distinguish the MRIs that are from a cancer patient and those

that are not, it is not convincing that he has learnt enough to become a radiologist. It is probably

true that he might not understand why one medical image correlates with a symptom.

This underpins a critical problem with all models seen in the previous section. Models such as

DeepCAT [15] have used randomly initialised models with no knowledge of TCRs and are directly

trained to predict cancer using TCR sequences. Although these models have demonstrated good

AUC results, this can be improved by taking a more gradual approach to training models. This

can be done by providing sufficient background knowledge of the problem to the model before

training the model in the actual knowledge we would wish the model to learn.

Furthermore, these works have been seen to use physico-chemical properties such as the Atchley

Factors [25] in two different articles: [23, 24], and the AAIndex [43] in [15] to represent TCRs

numerically. This is arguably not an effective way for a model to learn about the structure of the

TCR, as physico-chemical properties cannot capture TCR-specific information and neighbouring

amino acids within the same CDR3 sequence.

3.4.1 Domain Mismatch

Although MINN-SA used TESSA [47], an encoder specialised in encoding Atchley matrices from

CDR3 amino acid sequences onto a 30-dimensional vector, we argue that the use of TESSA is

an instance of domain mismatch. TESSA is a convolutional neural network that processes CDR3

sequences like images. This design overlooks the language-like structure of amino acid sequences,

which exhibit language-like patterns instead of visual images.

This mismatch becomes particularly problematic in tumour environments. The authors highlighted

a critical issue where the predictive power of TESSA diminishes due to the homogenisation of T

cell functional patterns in cancerous contexts. This renders TESSA less effective at distinguishing

tumour-targeting TCRs within its encoding space. The underlying cause may have stemmed from

TESSA’s failure to account for TCR sequences’ sequential, language-like structure, which is critical

for accurately interpreting TCR functional implications in complex biological settings like tumours.

Hence, we argue that using TESSA to detect cancer is a domain mismatch. Domain mismatch

occurs when we apply a model to a domain in which the model has not been trained or is weak. We

have seen that TESSA is weak in tumour environments, such as cancer. Hence, applying TESSA

to identify whether a patient has cancer in MINN-SA demonstrates this fundamental concept in

transfer learning.

3.4.2 Pre-Trained Models

To address problems such as domain mismatch and insufficient background knowledge of TCRs

and cancer, we propose using pre-trained large language models (LLMs). LLMs can understand

12

language-like properties of sequences and can offer insight into the complex relationships within

TCRs. Leveraging LLM’s ability to understand intrinsic language-like properties of amino acids,

a more thorough understanding of problems to do with TCR sequences can be acquired. Using

LLMs to model TCRs can also avoid problems such as the inability to generalise in particular

scenarios like cancer in TESSA.

Pre-trained models (PTM) such as ChatGPT [48] are models already trained with data from a

broad domain. PTMs will often have a broad understanding, but they are not specialised towards

solving one particular task. Whilst they can be used on specific tasks, they benefit from fine-tuning,

which uses data from a smaller domain and specialises a PTM. An example of this specialisation

process is fine-tuning a large language model like ChatGPT to classify whether an email is spam.

It has been seen that correct training paradigms will make fine-tuned models perform better than

PTMs [49, 50, 51]. It has also been demonstrated that large-scale fine-tuned PTMs often perform

better than models that are trained from scratch [52, 53, 54].

In a medical setting, LLaMA [55], a large language model, has been fine-tuned to create ChatDoctor

[56]. It has been shown that ChatDoctor’s understanding of patient inquiries have significantly

improved, and provides more accurate consultations than the pre-trained LLaMA. The authors

have also compared ChatDoctor to ChatGPT, where ChatGPT is a stronger PTM than LLaMA

in most aspects [57]. After fine-tuning, ChatDoctor yields a better BERTScore than ChatGPT in

responding to patient queries, underpinning the importance of fine-tuning.

Since we have seen that TCRs exhibit a grammatical structure in section 3.1, we can apply language

models pre-trained on TCRs to generate an encoding for them. This approach can be promising

as LLMs can create vectorised representations of the input based on the ordering of tokens and

their surrounding tokens, including ones positioned further away. This provides a solid promise to

our proposal of using pre-trained TCR language models in cancer prediction, as they can encode

tokens with information based on the surrounding amino acids, which is what physico-chemical

encodings cannot.

3.4.3 TCR-BERT

TCR-BERT is one of the earliest TCR pre-trained LLMs, which is then fine-tuned to solve TCR

sequencing problems [32]. TCR-BERT is a lightly modified BERT model pre-trained on unlabelled

TCR sequences. The model has approximately 57 million parameters, where the modifications onto

the conventional BERT model [58] allowed TCR-BERT to leverage unlabelled TCR sequences

effectively so it can learn from the vast diversity and complex binding dynamics of TCRs to

antigens.

TCR-BERT had been pre-trained using a two-step process to provide the model with a more

gradual process of understanding TCR problems. The two-step process is as below, and weights

for both models are available on HuggingFace with links provided:

1. Step 1: Masked Amino Acid Prediction.

https://huggingface.co/wukevin/tcr-bert-mlm-only

Upon initialisation, TCR-BERT is trained on a large dataset of unlabelled TCR CDR3

sequences. The training involved a masked language modelling process where 15% of amino

acids in each sequence is randomly masked and TCR-BERT is trained to predict these hidden

13

https://huggingface.co/wukevin/tcr-bert-mlm-only

Figure 3.2: TCR-BERT compared against GLIPH [32]

amino acids based on the unmasked 85%. This allowed the model to learn the underlying

semantics of naturally occurring TCR sequences.

The dataset used for this step consists of 88,403 predominantly human TCR sequences from

α and β chains only, collected from the public datasets: VDJdb [59] and PIRD [60]. This

covers a wide range of known and unknown antigen specificity and phenotypes, such as the

HLA alleles.

2. Step 2: Antigen Classification.

https://huggingface.co/wukevin/tcr-bert

Taking the model from the previous step, TCR-BERT is further trained on 4,365 β chains’

CDR3 amino acid sequences to predict the antigens they bind to.

It is promising to say that the model understands the underlying problem it is tackling with, such

as antigen prediction, as TCR-BERT is trained through a gradual process. The authors verified

this hypothesis by pairing TCR-BERT with downstream machine learning algorithms to tackle

supervised and unsupervised learning problems.

In the supervised learning scenario, the authors compared TCR-BERT’s ability to predict antigen

binding against other state-of-the-art algorithms when paired with a Convolutional Neural Network

(CNN) and Evolutionary Scale Modelling (ESM) [61]. Under 26 different training instances where

various amounts of antigens are used to train the paired model, TCR-BERT showed an improve-

ment in 25 out of 26 instances when paired with a CNN and showed an improvement in 26 out of

26 instances when paired with a downstream ESM when compared against other state-of-the-art

algorithms.

TCR-BERT has also shown a significant performance improvement compared to other algorithms

in predicting the TCR beta chain that binds to the human NP177 antigen. TCR-BERT had an

AUC of 0.338 whereas the second best performing AUC is 0.299, achieved by TAPE [62]. TCR-

BERT has also improved performance in predicting antigen binding when given paired TCR CDR3

alpha and beta sequence, showing an AUC of 0.608, where the second best performing AUC is

0.541, achieved by a baseline CNN.

TCR-BERT was also evaluated on unsupervised learning tasks. It was tasked to cluster patient

14

https://huggingface.co/wukevin/tcr-bert

TCR sequences upon pairing with the Leiden algorithm [63]. As a comparison, GLIPH was used,

which is a specially designed clustering algorithm for TCRs [33].

TCR-BERT demonstrated a more consistent performance in correctly clustering TCR sequences

across all percentage proteins clustered, as seen in Figure 3.2. GLIPH was only able to cluster a

maximum of 14% of TCRs, whereas TCR-BERT can cluster all TCRs, with an accuracy of slightly

lower than 90% as shown in graph C in Figure 3.2. This demonstrates that TCR-BERT can

transform the data so that downstream algorithms can better capture patterns within the data.

With its robustness and performance across both supervised and unsupervised learning tasks,

TCR-BERT promises that applying transfer learning to itself to predict cancer by pairing it with

downstream algorithms can give better results than other state-of-the-art algorithms.

15

Chapter 4

Methodology & Results

Having established the promise that transfer learning can assist models in understanding a spe-

cialised domain of expertise by first learning a broader domain, we aim to utilise pre-trained TCR

language models to predict cancer by pairing them with a downstream classifier.

This chapter demonstrates how the model architecture, training algorithm and training paradigm

are designed. In particular, we focus on two types of encodings: ‘symbolic’ and ‘subsymbolic’

encoding. The unconventional usage of these two phrases is inspired by ‘symbolic AI’ and ‘sub-

symbolic AI’. These phrases are created due to a lack of terminology that best distinguishes the

two representation spaces to the best of our knowledge. We define them as follows:

Definition 1 (Symbolic Encoding) Symbolic encoding is a method that represents nonnumer-

ical inputs by assigning meaningful values to each symbol. These values have an understandable

meaning towards it.

Definition 2 (Subsymbolic Encoding) Subsymbolic encoding is a method that assigns each

symbol within a nonnumerical input with values that do not carry a human-understandable mean-

ing. This method could be through a pre-trained model (PTM).

In this chapter, we aim to provide a layout of our experiment. Our experimental hypothesis is

that transfer learning, which refers to using subsymbolic encodings from a TCR PTM, is a more

effective means of training downstream classifiers to classify cancer than symbolic encodings.

We will use four symbolic encodings to provide evidence for our hypothesis and compare their

performances with two subsymbolic encodings. The two subsymbolic encodings are from TCR-

BERT and an in-house pre-trained model SCEPTR, which will be introduced in section 4.1.3.

An overview of the pipeline has been attached graphically as Figure 4.1 for convenience. Note that

when we use different encodings, we will only change the code that performs the action ‘Numerically

Representing Sequences’ within Figure 4.1, and subsequently, the number of neurons in the neural

network.

16

Figure 4.1: Data Pipeline

4.1 Data Processing

This section describes the data that we are using. We will introduce the training data, how we

clean it, and how to represent them numerically. We will also briefly discuss the in-house model

SCEPTR, which is a yet-to-be-published model developed within the Chain’s Lab. Note that we

do not claim the originality of SCEPTR.

4.1.1 Training data

We use three different datasets to train our model. These three datasets are stored within the

Chain’s Lab Research Data Storage and are not publicly available. TCRs are sequenced using the

same sequencing methodology in the three datasets to avoid a sampling bias in this study. We

suggest referring to the articles for each dataset to learn more about the sampling methodology.

The dataset containing all cancer patients will be the Lung Tracking Cancer Evolution through

therapy (Rx) dataset, also known as the Lung TRACERx, referred to as Tx [39, 64]. Data sampling

has been conducted in hospitals in London, Leicester, Manchester, Aberdeen, Birmingham and

Cardiff with 842 patients primarily diagnosed with Non-Small Cell Lung Cancer (NSCLC) over

an accrual period of 4 years [64]. We focus on early-stage lung cancer patients to increase the

practicability, as the model would be best prepared to classify whether an asymptotic patient has

lung cancer.

The control data is extracted from two different studies. One of the datasets was collected to study

healthcare workers during the first wave of the COVID-19 epidemic [65], and another dataset was

collected to investigate the effect of Bacillus Calmette Guerin (BCG) vaccination which is to

provide human protection against M. tuberculosis [66].

To maintain fairness, in that the control data is not obscured with T cell receptors with a BCG

or a COVID-19 specificity, we will only use data from individuals not infected with COVID-19 or

have not received the BCG vaccine. All experimental subjects within the control set have been

self-declared as healthy.

17

Whilst with appreciation that using TCR repertoires sampled from tumours for the positive set is

going to increase the accuracy as it is easier for the model to distinguish between the two classes,

we use only peripheral blood mononuclear cell (PBMC) data for both classes to avoid introducing

a bias to the model. Furthermore, it is unethical to invasively sample TCR repertoires from a

healthy patient’s lung since PBMC data can be sampled from a blood draw. Therefore, using

PBMC data for both classes is ethical and unbiased. Note that when we use the phrase ‘PBMC’,

we refer to only T cells whilst appreciating that PBMC includes more cells than T cells.

This study was conducted without ethical approval, as all files used do not include personal iden-

tifiers for the patients involved. All files contain only the sequences of TCRs in the blood draw,

which cannot be reverse-engineered to derive the patient’s identity.

4.1.2 Data Cleaning

We clean the data by removing all non-functional TCR sequences using TidyTCells (TT) [67], a

data-cleaning library for TCR repertoires. We use TT to find non-functional TCRs for removal and

standardise TCR annotations to be IGMT-compliant. To ensure that SCEPTR and TCR-BERT,

the two pre-trained models, perform properly as both are trained on alpha and beta chains, we

also remove TCRs that host a gamma or delta chain.

After cleaning, we are left with 230 files for the control set and 149 for the cancer set, totalling 379.

The amount of T cell receptors within each file is not fixed; each file contains TCR sequences for

either the alpha or beta chain for a particular patient, so there are two files from the same patient,

one for their alpha chain TCRs and another for their beta chain TCRs. It should be noted that

these alpha and beta chains are not paired.

To help the model better analyse the patient’s repertoire, we concatenate the alpha chain file

with the beta chain file for the same patient. This is because beta chains are thought to contain

more information regarding the epitope specificity of a TCR and are more diverse due to its VDJ

recombination process [68]. Therefore, if we concatenate the two files, we allow the model to have

a more thorough view of the patient’s bodily conditions and their repertoire of TCRs, thereby

making a well-rounded decision as to whether the patient has cancer.

After concatenating, we are left with 115 files for the control set and 75 files for the cancer set,

each corresponding to the whole TCR repertoire from the same patient. Note that one of the

pre-trained models, SCEPTR, can process V call and CDR3 sequences; therefore, we include the

V call genes in the files used to train SCEPTR’s downstream classifier.

4.1.3 SCEPTR

When this article was written, SCEPTR was an in-house, yet-to-be-published model within the

Chain Labs1. Similarly to TCR-BERT, SCEPTR is a pre-trained BERT-based language model on

TCRs but has 153 thousand parameters as opposed to TCR-BERT’s 57 million.

SCEPTR has been pre-trained with unlabelled paired chain TCRs from the dataset provided in

[69]. This enables SCEPTR to process paired or unpaired alpha and beta chains with V call and

CDR3 sequences to create an embedding. Since SCEPTR is not trained with the data used in this

study, this avoids data leakage to the downstream model. Using this dataset, SCEPTR was first

1This article does not claim originality in SCEPTR.

18

trained on masked amino acid modelling and subsequently contrastive modelling to assign spatial

locality for similar input data. It is trained to encode TCRs onto a 64-dimensional hyperspace.

4.1.4 Symbolic Encodings

Three physico-chemical encodings alongside 1 ‘control’ encoding will be used, collectively called

symbolic encodings. All four symbolic encodings are tab-separated value (TSV) files with several

numbers per amino acid indicating the amino acid’s physico-chemical properties. We refer to each

of these values for an amino acid as a feature.

For the physico-chemical encodings, we use the Atchley Factors [25], Kidera Factors [26] and Amino

Acid Properties [27]. They represent one amino acid with 5, 10 and 14 features, respectively. We

extracted the encodings from the following GitHub repository:

https://github.com/vadimnazarov/kidera-atchley.

We scale the values linearly for each feature using the minimum-maximum scaling technique defined

below to reduce the difficulty for the model to learn due to the values’ range. After scaling, all

values are between 0 and 1.

xi,scaled =
xi − xmin

xmax − xmin

We also use a random encoding as a ‘control’ encoding. We use five features pre-generated from a

random uniform distribution from 0 to 1 for each amino acid. We use five features in this encoding

since the minimum number of features per amino acid in the physico-chemical encodings is 5.

If we assume that physico-chemical encodings provide a good and learnable embedding space, we

would assume that all three physico-chemical encodings will outperform the random encoding, as

the random encoding’s embedding space should be challenging to learn since it is random. On

the contrary, if any of the three physico-chemical encodings have a similar or worse performance

than the random encoding, then this shows that the particular physico-chemical encoding is not a

practical representation space.

We create a vector representation for each TCR CDR3 sequence from each symbolic encoding by

first generating an embedding for each amino acid in the TCR sequence. Then, we average the

list of embedding vectors, creating one vector representing the whole TCR CDR3 sequence. We

take an average across the embeddings’ representation to maintain fairness since we also take a

feature-wise average from TCR-BERT’s subsymbolic encoding, which will be covered in the next

section.

4.1.5 Subsymbolic Encoding

In this section, we will introduce large language models (LLMs) as we have seen that our two

symbolic encodings, TCR-BERT and SCEPTR in section 3.4.3 and 4.1.3 respectively, are both

LLMs. We then discuss how and where we will be extracting our embedding from.

Although LLMs such as ChatGPT [48] seem to be taking in strings as input, the neural network

itself does not take in a string. It takes in a vectorised expression of the string instead. Typically,

a string is passed into a tokenizer, which parses the string into a series of tokens, which can be

words, multiple words or sections of words [70].

19

https://github.com/vadimnazarov/kidera-atchley

In bioinformatics, it is often true that one amino acid is tokenized into one token, which can then

be parsed into a one-hot vector where the non-zero value within this one-hot vector indicates the

amino acid. This is no exception for SCEPTR and TCR-BERT.

The token will then be passed into a transformer-based structure, such as BERT [58], to turn the

tokens into an embedding. This embedding refers to a vector inside a high-dimensional vector

space. This transformer aims to assign spacial locality to similar inputs [70]. These embeddings

are then passed to the neural network for processing, where this processing could be a classification

task such as masked language modelling.

In conventional natural language LLMs, it has been observed that it can be complicated to teach

one pre-trained language model to understand another language [71, 72, 73]. Yet, through active

forgetting, a technique that involves actively resetting the output embedding layers and retraining

the whole neural network, it has been shown that PTMs give a better performance than adding

extra embedding layers at the end of the network [74] or training the LLM for some extra epochs

on the target language without amendments to the neural network configuration.

This demonstrates that through a good quality of pretraining, models can capture adequate in-

formation about the broader domain in upstream layers, increasing its plasticity and robustness

across similar domains [75, 76, 77, 78].

There is much research that supports this claim, where it has been suggested that earlier layers

within neural networks are not only applicable for one dataset but seem to be transferable across

problems within a similar domain as it is learning a low level of information [79]. This is particularly

evident within Convolutional Neural Networks [80, 81]. A similar observation is expected within

Large Language Models [82, 83], but is challenging to be solidly proven within Large Language

Models, as they are one of the least interpretable classes of deep learning models [84].

On the subject of cancer prediction using TCRs, we are looking for an output embedding that

can be beneficial for our prediction task - having established that earlier layers of PTMs contain

a broad set of information, which could, therefore, help downstream layers to learn better as it

assigns a meaningful geometric hyperspace to the input, we will look into using earlier layers, or

the layers that are to deal with processing the language of TCRs to pair with our downstream

algorithms.

We will be using two different LLMs to generate output embeddings for our task: the first is

SCEPTR, as previously introduced in section 4.1.3. SCEPTR is a pre-trained model, which has

been trained on data provided in [69], and therefore is an independent dataset to Tx. SCEPTR

has been trained to generate a 64-dimensional output embedding based on a TCR’s V call and

CDR3 sequence. SCEPTR comes with a package that computes the vector representation of TCRs

using the pre-trained model. The vector representation of each TCR is calculated using the <cls>

pooling method, where the output embedding is the embedding of the <cls> token.

The second model we use is TCR-BERT, reviewed previously in section 3.4.3. We will use the

masked amino acid modelling pre-trained variant of TCR-BERT, which can process alpha and beta

chain CDR3 sequences. This can provide more information about the patient’s TCR repertoire

to downstream models than the other variant that can only process beta chains. TCR-BERT is

trained on VDJdb, independent of Tx and the two control datasets.

TCR-BERT has 12 blocks of BERT [32], outputting a 768-dimensional feature space. Since the

20

Figure 4.2: Downstream Model for Cancer Classification

BERT structure is highly efficient in language modelling, we will extract only the BERT structures

within the network to pair with our downstream algorithm.

Conventionally, we should extract the embedding of the <cls> token to extract the embedding

from a BERT structure, similarly to SCEPTR. However, TCR-BERT is a modified BERT model

that tackles classification rather than protein generation, so TCR-BERT does not output a stop

token. Instead, each amino acid sequence is represented in a 768 by n matrix, where n is the

number of amino acids in the TCR CDR3 sequence. We create a vector representation of each

TCR by averaging row-wise in this 768 by n matrix to obtain a 768-dimensional vector representing

the CDR3 sequence.

During our training, we will freeze the parameters in both large language models, therefore making

them untrainable.

4.2 Model Design

Since we hypothesise that subsymbolic encodings are more efficient than symbolic encodings, we

will use a simple model with minimal parameters and demonstrate that it can infer better when it

takes in subsymbolic encodings as opposed to symbolic encodings, even using a simple model and

without fine-tuning the upstream model during training.

In this section, we first describe the downstream model for the two methods of subsymbolic encod-

ings and argue that using this same model architecture for the symbolic encodings is a fair means

of comparison to demonstrate that symbolic encodings are not as expressive. An illustration for

the model has been placed as Figure 4.2.

21

4.2.1 Subsymbolic Encoding Downstream Model

The problem of classifying whether a patient has cancer using TCRs is a Multi-Instance Learning

problem. Within each TCR repertoire (often referred to as ‘a bag’ in the context of Multi-Instance

Learning), we have a collection of TCRs from the patient and a label for whether this patient has

cancer. However, we do not have a label for whether each TCR has a cancer specificity.

This further motivates the importance of a simple model. During forward propagation, the input

to each layer is stored to compute the gradients in the backpropagation step. These inputs are

stored in GPU memory and are not deleted until backpropagation.

In the context of using TCRs to predict cancer, since we do not have a fixed amount of TCRs

in each TCR repertoire, the number of TCRs per repertoire could be large. This means forward

propagating a whole TCR repertoire down a deep model could incur many of these inputs to be

stored within the network. Since this accumulation can only be cleared out by taking one update

step, this leads to an explosion in GPU memory usage, causing complications when training the

model due to computational constraints.

Creating a model for this task is difficult as there may only be a few TCR instances in a cancer

bag specific to cancer. Moreover, the number of TCRs in a bag is not a determined value, and it

is impossible to sort them meaningfully.

This highlights the importance of using a weighted sum, which is what MINN-SA [23] used for their

work. It will be desirable if the weights add up to 1, as this avoids creating a bag-representing

vector with a significantly smaller or larger magnitude than the output embeddings. Similarly

to MINN-SA, we rely on a weighted sum generated by a sparsemax activation layer [46]. The

sparsemax algorithm is defined as Algorithm 4.2.1, where τ is defined to be a threshold function

and all values smaller than τ(·) will be assigned value 0. The sparsemax Function is non-smooth

but is differentiable except at a few points. Details can be seen in [46].

Algorithm 1 Sparsemax Algorithm [46]

1: Input: Vector z ∈ Rn

2: Define: z(i) as the ith value in Vector z
3: Sort z as z(1) ≥ z(2) ≥ · · · ≥ z(n)

4: Find k(z) := max
{
k ∈ [K]

∣∣∣ 1 + kz(k) >
∑

j≤k z
(j)

}
5: Define τ(z) =

(∑
j≤k(z) z

(j) − 1
)
/k(z)

6: Output: probability vector p such that pi = max(zi − τ(z), 0)

As opposed to a softmax activation function, which is defined as:

softmax(x)i =
exp(xi)∑n

k=0 exp(xk)

We use a sparsemax as it outputs a sparse probability distribution. A sparse probability distribu-

tion is more desirable than a softmax since we know that only a small amount of xks correspond

to cancer, where we define xi to be a TCR instance and ei to be its embedding.

If a softmax function generates the weights, all ei will be assigned some non-zero weighting regard-

less of how small it is, which obscures the signal in the weighted sum and, therefore, makes it hard

for the downstream classifier to learn a relationship.

22

To use the sparsemax function, we must assign a scalar score to each input vector. To make sure

that our function is simple, we implement a linear function, where the score, for instance i will be

computed as:

si = ⟨ws, ei⟩+ bs

where we define ws as the scoring weights and bs as the scoring bias. This layer is named the

scoring layer, and this function assumes that all TCRs with the same specificity will point strongly

to direction w∗
s , which we call the optimal direction.

In the discussions section, we will evaluate the cosine similarity of w∗
ss from different training

instances of the same model architecture to evaluate whether the upstream model can put TCRs

with the same specificity in a close distance despite not knowing this information from training.

After we obtain si, we can obtain pi, the weighting outputted by the sparsemax function, for

instance i. We can think of pi as the probability that xi is a TCR with a cancer specificity.

Subsequently, we can compute the bag-representing vector bX =
∑

piei. This is a weighted sum

of the embedding vectors ei with pi being the weights. This can then be classified with a logistic

regression model f(bX) = σ(⟨wc, bX⟩ + bc) to compute the probability of cancer where σ is the

sigmoid activation function.

The model can be visually illustrated as Figure 4.2. In particular, we assert that the model that

generates the output embedding will have all parameters frozen and, therefore, will not update dur-

ing gradient descent. We believe that doing so will demonstrate the robustness of the subsymbolic

encoding.

4.2.2 Symbolic Encoding Downstream Model

To design a symbolic encoding downstream model that adequately compares the difference between

the quality of the embedding space for each encoding method, we must not introduce further

information into the encoded vector through kernels nor increase the difficulty of the learning

algorithm by training an unnecessary number of parameters.

We also believe that using an autoencoder like TESSA [44] is not a good idea as TESSA discards

the linguistic structure of the input and is weak at embedding TCRs from a tumour environment,

such as a cancer patient.

Hence, we will use the raw representation space to embed the input. After numerically representing

each amino acid as a vector, we average the vectors to obtain one vector representing the TCR

CDR3 sequence for fairness since we do the same operation for TCR-BERT. Note that all values

within the vector will be in the range of 0 to 1 to ensure the input range does not affect the

difficulty of the learning algorithm.

To avoid increasing the difficulty of the learning algorithm whilst ensuring that we evaluate sub-

symbolic and symbolic encodings fairly, we believe that the symbolic encoding’s downstream model

should share the same model architecture as the subsymbolic encoding’s downstream model. This

ensures that the difference between the performance of the models trained from the two encodings

originates in the expressivity of the encoding methods.

As the amount of features within symbolic encodings is significantly lower than subsymbolic encod-

ings, we create table 4.1 to demonstrate the trainable parameters in our model for each encoding

23

Encoding Method Encoding Dimension Trainable Parameters
Atchley & Random 5 12
Kidera 10 22
Amino Acid Properties 14 30
TCR-BERT 768 1538
SCEPTR 64 130

Table 4.1: Number of Parameters in downstream model

means. Note that there are two trainable linear layers that both output a scalar; hence, the number

of trainable parameters can be modelled as 2(n+ 1).

4.3 Experimental Layout

We provide background information to our experiment here, such as hyperparameters and the

training environment.

4.3.1 Training Environment

The code has been deployed in Python 3.11 using PyTorch 2.2.0 with CUDA 12.1 acceleration.

Versions for other libraries can be found in the GitHub repository where the code has been de-

posited. The training has been completed on PCs with i9-12900K processors, 128 GB RAM and

NVIDIA GeForce RTX 3090 Ti GPUs, which have 24GB GRAM.

Due to resource limitations, it is impossible to correctly report the time taken for each training

process as if they were run on a computer without background tasks. This is because all PCs

used in this study are shared across students, meaning that someone could be running an intense

background task whilst we are running our training. This makes the recorded run time inaccurate.

4.3.2 Hyperparameters

Since TCR-BERT has a significantly higher output embedding dimension than the other encod-

ings, we will use L2-Regularisation to reduce the complexity of TCR-BERT’s downstream model.

This can be imposed by PyTorch’s optimizer’s weight decay parameter. We use 0.25 as our

L2-Regularisation strength. Note that models trained for all other encodings do not use L2-

regularisation.

However, we are still expecting TCR-BERT’s downstream model to overfit. This is because TCR-

BERT’s downstream model has 1538 parameters, whilst we have only 190 labels to train it. This

makes the training problem for TCR-BERT’s downstream model over-determined. Whilst it is pos-

sible to downscale TCR-BERT’s feature space through the use of an auto-encoder or the Johnson-

Lindenstrauss Lemma, we are not doing so as we are looking to compare the raw embedding space

as discussed in section 4.2.2 to maintain fairness.

To explore the best model for each encoding, we train the model for 50 epochs, an extensive amount

for 190 bags. We deem this amount of epochs comprehensive as we have observed plateauing in

training loss for most training instances across all embedding means except for TCR-BERT, where

it overfitted.

24

https://github.com/RcwYuen/TCR-Cancer-Prediction/blob/main/scripts/

We will then select the best model from the checkpoints generated from the 50 epochs. The best

model is selected based on the highest test set AUC in the training instance. The test loss at that

epoch should not increase compared to the previous few epochs, as this is a sign of overfitting.

The learning rate is 0.001 for all six embedding methods on the Adam optimiser [85]. This relatively

small learning rate should allow the model to take enough steps throughout the 50 epochs to

converge. Other hyperparameters in the Adam optimiser are as PyTorch’s default.

One limitation is that we are unable to perform a Grid Search to find the best set of hyperparam-

eters in this task as the training takes at minimum 36 hours for each encoding when we use an

80%-20% train and test data split, rendering it not feasible to perform such an extensive search.

The problem with the time taken is more severe in training TCR-BERT’s downstream model,

where it took at least 72 hours to complete the 50 training epochs.

To mitigate problems with class imbalance, we upscale the calculated Binary cross-entropy loss.

For example, if 25% of our data is in the positive class and the remaining is in the negative class,

we scale the Binary Cross Entropy loss up by 1
0.25 = 4 times if we are computing the loss for the

positive class and 1
0.75 = 4

3 otherwise. This is done to encourage the model to descent more on the

minority class than the majority class, so the model will not classifying everything to the majority

class. Note that the losses that we will present are not upscaled.

4.4 Results

Encoding Train BCE Loss Train Accuracy Train AUC
Atchley 0.686 - 0.696 (µ: 0.691) 0.395 - 0.750 (µ: 0.583) 0.223 - 0.877 (µ: 0.663)
Kidera 0.670 - 0.690 (µ: 0.682) 0.664 - 0.836 (µ: 0.732) 0.876 - 0.951 (µ: 0.909)
AA Properties 0.570 - 0.691 (µ: 0.664) 0.566 - 0.849 (µ: 0.716) 0.648 - 0.912 (µ: 0.784)
Random 0.687 - 0.692 (µ: 0.689) 0.612 - 0.836 (µ: 0.716) 0.778 - 0.889 (µ: 0.843)
TCR-BERT 0.105 - 0.353 (µ: 0.221) 0.836 - 0.980 (µ: 0.914) 0.925 - 0.995 (µ: 0.967)
SCEPTR 0.273 - 0.601 (µ: 0.396) 0.824 - 0.949 (µ: 0.886) 0.882 - 0.978 (µ: 0.948)

Table 4.2: Results for the best-performing checkpoint on the train set

Encoding Test BCE Loss Test Accuracy Test AUC
Atchley 0.684 - 0.694 (µ: 0.690) 0.395 - 0.763 (µ: 0.674) 0.157 - 0.939 (µ: 0.728)
Kidera 0.663 - 0.690 (µ: 0.681) 0.632 - 0.921 (µ: 0.763) 0.901 - 0.975 (µ: 0.941)
AA Properties 0.595 - 0.692 (µ: 0.669) 0.526 - 0.842 (µ: 0.711) 0.768 - 0.892 (µ: 0.855)
Random 0.686 - 0.691 (µ: 0.688) 0.605 - 0.842 (µ: 0.753) 0.889 - 0.960 (µ: 0.927)
TCR-BERT 0.366 - 0.579 (µ: 0.497) 0.737 - 0.842 (µ: 0.795) 0.820 - 0.946 (µ: 0.900)
SCEPTR 0.254 - 0.606 (µ: 0.406) 0.771 - 0.971 (µ: 0.877) 0.901 - 1.000 (µ: 0.950)

Table 4.3: Results for the best-performing checkpoint on the test set

Unless otherwise specified, we repeat the same training process five times for each encoding. Across

these repeats, we will use different training and testing data splits and model parameter initial-

ization. Note that our results are statistics from the best checkpoint, where the best checkpoints

have the best test AUCs across the 50 epochs. We have also manually checked that these chosen

checkpoints’ test AUC is approximately similar to the train AUC and is not ascending in the test

loss in that particular epoch.

Table 4.2 and Table 4.3 summarise the performance of the best checkpoints for each encoding’s

25

downstream model’s training instance. Details are in Appendix A, where we attached the training

and testing loss graphs, AUC graphs and the confusion matrices for each encoding method. Note

that we used the threshold of 0.5 to compute the confusion matrix and accuracy statistics.

4.4.1 Evaluation Set

Splitting the data into train-validation-test sets is often considered good practice in machine learn-

ing. The training set is used to train the model, and the validation set is used to validate the

model during training. The test set is often withheld to observe the different models’ performance

on some mutually unseen data after training. We refer to this partitioning as train-test-evaluation

instead of train-validation-test. This is because we performed a 2-way train-test split to avoid los-

ing too much data before, and the phrase ‘test’ in a 2-way split has the same functional meaning

as ‘validation’ in a 3-way split in our context.

Since we do not have many repertoires, we only create an evaluation set from our data to evaluate

the best-performing encoding to avoid further reducing the knowledge that the models can learn

from.

We have observed that SCEPTR’s embeddings allow its downstream models to attain a robust

test set AUC. Therefore, we create an evaluation set by manually withholding 10% of the data,

equivalent to 19 patients’ data. We then train SCEPTR’s downstream model again, from scratch,

with the remaining 90% of the data.

Table 4.2 and 4.3 presents SCEPTR’s performance after withholding the data. We repeat the

training ten times instead of five, where each training instance splits the remaining 90% of the

data using an 80%-20% train-test split.

These 19 patients are composed of 10 control patients, where we extract five patients from each

of the two control datasets. The remaining are cancer patients. For convenience, the patients

extracted from each dataset have consecutive patient IDs. Since the patient ID and the difficulty

of classifying the patient are not correlated, the methodology in choosing repertoires is not based

on prior knowledge of its difficulty in classifying. On the contrary, some files withheld to serve as

the evaluation data have only CDR3 sequences and do not contain the V calls. This introduces

extra difficulty in classification as the TCR encodings are not created from a thorough view of the

chain.

We test the downstream models on the evaluation data by taking the best checkpoint from each

of the ten repeats. The evaluation set’s AUC curves and confusion matrix across the ten trained

models have been attached as Figure A.37 and A.38 respectively.

For convenience, the summary of the evaluation set’s BCE Loss, accuracy and AUC values for the

ten training instances’ best checkpoints are summarised as table 4.4.

Encoding BCE Loss Accuracy AUC
SCEPTR 0.215 - 0.545 (µ: 0.326) 0.842 - 1.000 (µ: 0.947) 0.922 - 1.000 (µ: 0.988)

Table 4.4: Results for SCEPTR’s downstream model’s performance on the evaluation set

Note that data leakage can not happen during training. This is because TCR repertoires are

cleaned independently, and the evaluation data has been manually withheld, so it does not exist

in the computer that trained the downstream model.

26

Chapter 5

Discussion

In this chapter, we discuss the robustness of our approach, with a specific focus on SCEPTR as

the subsymbolic encoding method. We also evaluate the weaknesses of all symbolic encodings and

the limitations of our investigation.

An outline of potential future works for this project will be provided. Future works will be con-

ducted in three directions: increasing the accuracy of cancer prediction using TCRs, extending

this investigation between the expressiveness of subsymbolic encoding and symbolic encoding, and

increasing the robustness of our study.

5.1 Achievements

Through our experiments, we have demonstrated that symbolic encodings are likely to be a less

expressive encoding space than subsymbolic encodings. In this section, we provide three primary

evidences for this belief.

The hypothesis that TCR-BERT will overfit can be shown when we compare TCR-BERT’s train

loss in table 4.2 against its test loss in table 4.3. This is because the train losses in TCR-BERT are

significantly lower than the test loss, a sign of overfitting. In section 5.3, we will propose methods

to mitigate this issue.

5.1.1 Symbolic Encoding’s Lack of Expressivity

We have stated in section 2.2 that physico-chemical encodings are theoretically not as expressive

as embeddings from an LLM as LLMs output context-based embeddings, where this embedding

has been made with consideration to neighbouring amino acids, which cannot be achieved through

encoding with physico-chemical properties.

Three pieces of evidence will be provided to support this claim. They collectively reason why

physico-chemical encodings are less expressive than subsymbolic encodings, supporting the above-

mentioned claim.

27

Convergence of Training Loss

We can see the train and test loss curves for the downstream model that encodes TCRs using

Atchley factors, Kidera factors, AA Properties and Random Encodings in Figure A.13, A.19, A.25

and A.31 respectively. We notice that only one training instance that used AA Properties as the

encoding method showed a sign of learning, demonstrated by its continuous decrease in training

loss. This instance of the training resulted in a final train loss of 0.570. All other training instances

that encoded TCRs using symbolic means have failed to decrease their training loss throughout

epochs and have converged quickly.

We believe that this is not due to a small learning rate, as we can see that some training instances

showed a sharp decrease in loss and plateaued quickly. If the problem is with a small learning rate,

all training instances should gradually decrease their training loss rather than plateauing.

When we compare this AA Properties’ downstream model’s train loss with TCR-BERT’s or

SCEPTR’s downstream model’s training loss, we notice that the change in loss in AA Proper-

ties’ downstream model is insignificant. All of SCEPTR’s downstream model’s training instances

have succeeded in decreasing their train loss, and SCEPTR’s best downstream model’s train loss

was 0.276. A similar observation can be made with TCR-BERT in table 4.2.

This demonstrates some easily learnable patterns within SCEPTR’s and TCR-BERT’s output

embedding since most of their downstream models’ training instances were able to fit towards

it eventually. However, in symbolic encodings, we observe that even if there is a pattern that

distinguishes cancer patients and non-cancer patients, this pattern can be complicated for the

models to learn and observe.

This problem with train loss is furthered if we consider a classifier which outputs 0.5 all the time.

This classifier will have a binary cross-entropy loss of the following:

− 1

n

n∑
i

yi ln(pi)+ (1− yi) ln(1− pi) = − 1

n

n∑
i

yi ln(0.5)+ (1− yi) ln(0.5) = − 1

n

n∑
i

ln(0.5) ≈ 0.693

Note that this expression is invariant to class imbalance since yi is cancelled. We see that the

smallest train BCE loss for the four symbolic encodings is 0.570, and the smallest test BCE loss

is 0.595, which is much closer to 0.693 than the train loss of 0.273 and test loss of 0.254 achieved

by SCEPTR’s downstream model. This suggests that the probabilities outputted from symbolic

encodings’ downstream models are always close to 0.5, showing that the downstream model is

always uncertain about its decision-making.

AUC

Whilst metrics such as the accuracy and confusion matrices are indicative of the model’s perfor-

mance, it requires a selection of a threshold value whereby all values outputted by the model below

the threshold value will be assigned a label 0 and label one if the values are above the threshold.

In the plots we showed in Appendix A, all figures relating to the accuracy or inferencing on

TCR repertoires use the threshold 0.5 as a comparison. However, the AUC measures the model’s

performance when we vary this threshold, which mitigates this issue. Therefore, the AUC is more

credible when we do not know the optimal threshold.

28

The test AUCs of the subsymbolic and symbolic encodings are in table 4.3. Ignoring all TCR-

BERT’s downstream models, which suffered from overfitting, causing a low AUC, we can see that

SCEPTR’s downstream model can give an extraordinary AUC statistic of at maximum 100% with

a mean of 95%. Note that these AUCs are recorded after reserving 10% of the data to serve as the

evaluation set, which should increase the difficulty of SCEPTR’s downstream model to learn the

data properly.

On the contrary, the mean AUCs for the symbolic encodings are 72.8%, 94.1%, 85.5% and 92.7% for

Atchley Factors, Kidera Factors, AA Properties, and Random Encodings, respectively. Although

Kidera Factors can reach a mean test AUC similar to SCEPTR, it cannot get the perfect test set

AUC that SCEPTR can achieve in multiple instances.

Given these arguments, it can be concluded that SCEPTR’s embedding space is more expressive

than most symbolic encodings.

Difference with Random Encodings

Random encodings are used as the control encoding, where this encoding carries no meaning what-

soever, unlike the physico-chemical encodings. We would therefore expect the random encodings’

downstream classifier to perform worse than the physico-chemical encodings’ downstream classifier.

However, we observe that all training statistics, such as the loss, accuracy and AUC for random

encoding’s downstream models, are approximately similar to the downstream model trained with

TCRs encoded with physico-chemical encodings in table 4.2 and table 4.3. The random encodings’

downstream model occasionally performs better than the physico-chemical properties’ downstream

model in accuracy and AUC. For example, random encodings’ downstream model had higher mean

accuracy and AUC than AA Properties’ and Atchley Factor’s downstream model in both the train

and test set.

This provides evidence that random encodings are approximately as expressive as the physico-

chemical encodings since the difference in performance of their downstream models is minimal. This

also suggests that the models are learning sets of individual shared TCRs, where the embedding

method does not matter.

On the other hand, we can see a significant difference between the performance of SCEPTR’s and

symbolic encodings’ downstream models in the test set. This observation cannot be made when

we compare the performance of physico-chemical properties and random encodings’ downstream

models. This demonstrates that subsymbolic encodings are far more expressive than symbolic

encodings.

5.1.2 Novelty

In this study, other than demonstrating with novelty that symbolic encodings are not as expressive

as subsymbolic encodings, we have also attained far better AUC statistics than state-of-the-art

methodologies in cancer prediction by using SCEPTR’s encodings.

We have seen in [23] that the current state-of-the-art AUCs for NSCLC is approximately 62.5%

and 65% 1 in Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LUSC), re-

1The authors for MINN-SA did not provide the exact numbers, and these numbers are only an estimation from
reading Figure 5.1’s black line, which indicates MINN-SA’s performance.

29

Figure 5.1: AUC Results for 10 Cancer Types on imbalanced dataset [23]

spectively. Note that the AUCs in Figure 5.1 did not include DeepCAT [15] and the Logistic

Regression approach [22] as the authors of MINN-SA did not find these articles reproducible [23].

However, even if we were to include DeepCAT and the logistic regression approach’s AUCs, whereby

they achieved 95% and 91% AUC, respectively, SCEPTR’s downstream model’s average AUC

performance of 98.8% on the evaluation set (Table 4.4) is still the best.

Whilst it can be argued that MINN-SA, DeepCAT and the logistic regression approach used

different datasets to train their model, given that our model distinguished whether a patient has

cancer from PBMC data, it is unlikely that our data is easier to classify than the data used in

any of the three studies as mentioned earlier. This is because some articles, such as MINN-SA,

classified tumour tissue TCR repertoires against PBMC TCR repertoires from control patients,

which is biased and is an easier task than comparing PBMC data from cancer and healthy patients.

Thus, we believe that using pre-trained TCR language models as the encoding method would be

a good direction in researching methodologies for predicting whether a patient is diseased.

5.2 Interpretability

We have seen success over SCEPTR’s downstream model, which has demonstrated state-of-the-art

AUC statistics as opposed to current models. In this section, we aim to uncover what SCEPTR’s

downstream model has learned by looking at the probability distribution that the sparsemax layer

generated. We will focus only on the best checkpoint out of the ten repeats we have done, which

is the 5th repeat, which attained 100% AUC on both the test and evaluation set, demonstrated in

Figure A.37. This perfect score indicates that the 5th repeat’s model had best learnt the underlying

relationship between TCRs and cancer when compared against the other repeats.

We will then look at how ill-posed the problem is by looking at how different the weights for each

training instance are against other training instances through the cosine similarity and Euclidean

distance.

30

5.2.1 Predictive T Cell Receptors

A property of the sparsemax layer is that it assigns weights sparsely; therefore, only a small

fraction of TCRs will be assigned weights. We can interpret the model’s understanding of which

TCRs correspond to cancer by interpreting which TCRs have been assigned a non-zero weight.

Subsequently, we can gather these TCRs for each correctly classified patient, attempt to understand

what the model has learnt, and evaluate whether this knowledge aligns with what we know in

biology.

We attempt to understand which V call, J call and CDR3s have been seen repeatedly within differ-

ent patients in the evaluation set with the best training instance that used SCEPTR’s encodings,

where this ‘best training instance’ is hereby referred to as ‘the model’. In particular, we are most

interested in whether we see the same V call, J call and CDR3 sequence within different true

positives.

The model correctly classified 18 out of 19 patients in the evaluation set, whereas it incorrectly

classified one control patient. In the nine correctly classified true positives, the model assigned

non-zero weights to 32 alpha chains and 292 beta chains TCRs.

Although the evaluation set has more beta chains than alpha chains, we believe it is not the root

cause of the model picking up more beta chains for true positives. This is because in table A.4,

which records the occurrence of the non-zero weighted TCRs V and J call chains in true negatives,

we notice that the model picked up 180 alpha chains and 102 beta chains. Suppose the hypothesis

that there are more beta chains in the evaluation set, so the model picks up more beta chains in

the true positives, is true. The model should assign more non-zero weights to beta chains than

alpha chains in the true negative samples.

Furthermore, there are 464300 alpha chains and 680238 beta chains TCRs in the nine true positives.

It can be seen that the ratio of nonzero weighted alpha chains against beta chains is unmatched

with the total amount of alpha and beta chains. This demonstrates that the model decides that

there are more signals to the positive label in the beta chain than in the alpha chain. This is in

line with what we know in biology, as beta chains are thought to carry more information about

the specificity of the TCR due to a more diverse set of beta chains that can be generated from the

VDJ recombination.

Table A.2 illustrates the unique V and J calls within these non-zero weighted alpha and beta chains

and their occurrence frequencies. We can see that TRBV2 is the only beta V call that the model

has picked up, and it has also picked up a collection of J calls repeatedly.

We check whether these V and J call genes could be from cancer-targeting TCRs with the use of

VDJdb [59]. For simplicity, we only focus on TRBV2 and the most frequently picked up J call

gene TRBJ2-2. Note that VDJdb does not incorporate data from our datasets.

Among all cancer-targeting TCRs with a high confidence registered in VDJdb, we observe 135

TCRs have a TRBV2 gene and 294 TCRs have a TRBJ2-2 gene. Of these, 25 TCRs have TRBV2

and TRBJ2-2 as their beta chain V and J call genes.

We gathered the CDR3 sequences seen in multiple patients and placed them in Table A.3. It can

be observed that multiple rows have identical CDR3 sequences. This is because the weighting

assigned by sparsemax for the same CDR3 in different patients will differ.

31

In total, SCEPTR’s downstream model picked up seven CDR3 chains seen across several patients.

Six CDR3 chains are from the beta chain, and one is from the alpha chain. We can see that these

six beta chains are all formed from the TRBV2 V call and either TRBJ1-2 or TRBJ2-2 J calls. We

attempted to search whether these 7 CDR3 chains are recorded in VDJdb but in vain. Since our

dataset and VDJdb are independent, the nonexistence of these CDR3 chains in VDJdb does not

show that these CDR3 chains are incorrectly picked up, as CDR3 chains are known to be highly

variable.

The CDR3 chain ‘CASRGLTGNYGYTF’ has been seen in 4 patients. Amongst these four pa-

tients, this chain had been expanded in 3. The phrase ‘expanded’ refers to the scenario where the

same chain has been spotted more than once within the same blood draw. This is caused by T

cell proliferation during clonal selection. We also observe that the CDR3 chain ‘CASSFRGGAD-

EGYTF’ is highly expanded within the two patients with this chain in their blood draw. This

CDR3 chain has been seen 16 and 32 times within the two patients.

On the contrary, the model picked up more signals from the alpha chain in the true negatives. The

model did not give weighting to the same beta chain CDR3s within different patients. The CDR3

sequences that the model picked up are, firstly, alpha chains and, secondly, not as expanded as what

we saw in the true positives (Table A.5, A.6). The most expanded CDR3 sequence that the model

picked up was an alpha chain with CDR3 sequence ‘CAVGGYNKLIF’, with eight occurrences

within the same patient.

All in all, we can see that even when the model is not informed about the duplicate counts of the

TCR during training, the model still picks up expanded TCRs for cancer patients. In the non-zero

weighted TCRs in true positives, the model prioritises beta chains, which were thought to carry

more signals than alpha chains.

The model assigns non-zero weights to a large selection of TCRs in the true negatives, demonstrat-

ing no signal for the model to pick up. These two factors demonstrate robustness with SCEPTR’s

embedding space and the downstream model.

5.2.2 Component Similarity

To evaluate whether SCEPTR assigns all cancer-targeting TCRs into one close region, we evaluate

how similar the scoring layer’s weights are against every other repeat of SCEPTR’s downstream

model. The scoring layer is the layer that assigns a score to each TCR for assigning weights

by sparsemax. We also evaluate the similarity of the classifying layer across different training

instances.

The intuition for doing so is that if SCEPTR assigns all cancer-targeting TCRs to one close

region, then all models that are trained on SCEPTR’s embedding space will have the scoring layer

pointing in the same direction since there is only one region that has the features that help the

model understand the relationship. Hence, we should expect the distance between different models’

scoring layers’ weights to be close if this is the case.

That said, SCEPTR was never informed about the TCR’s specificity during its training; it should

not be expected that SCEPTR assigns spatial locality by specificity.

Sparsemax assigns weights by seeing how large the score is. Only the instances close to the scoring

layer’s weights will be assigned high scores. Therefore, we would assume that the scoring layer

32

is similar to the classifying layer. Using this argument, we would expect the classifying layers’

weights to be similar to other training instances.

We quantify this similarity through the cosine similarity and the Euclidean distance. The cosine

similarity measures the angle between two different points, whereby -1 indicates that they are

pointing in totally different directions, and 1 indicates that they are identical. Cosine similarity is

modelled as below:

cosine similarity =
A ·B

||A|| ||B||

The Euclidean distance measures the distance between two different points, and the Euclidean

distance is also referred to as the L2 norm between two vectors. We normalise each vector to have

an L2-norm of 1 before computing the L2 norm between two vectors for convenience in visualising

this distance since the magnitude would influence how the matrix of Euclidean distances is created.

The L2 Norm is defined as below:

L2 Norm = ||A−B||22

Using these two formulas, we obtain Figure A.39, which measures the similarity between different

training instances on the scoring layer, Figure A.40, which measures the same but for the classifying

layer and Figure A.41 which measures the similarity between the same training instances’ scoring

and classifying layer. Note that we have deliberately created a NaN in the diagonal for better

visualisation.

Suppose our hypothesis, as mentioned earlier, that SCEPTR assigns cancer-targeting TCRs to one

close region, is true. In that case, we should expect the Euclidean distances of different training

instances’ classifying layers and scoring layers to be close to 0 and cosine similarity to be close

to 1. Yet, the similarity between different training instances’ classifying and scoring layers is low

in Figure A.39 and A.40. In the same training instance, the similarity between the scoring and

classifying layer is also low. This suggests that SCEPTR does not assign spatial locality to TCRs

by its specificity in its embedding hyperspace.

5.3 Limitations

Although we have seen success in demonstrating subsymbolic encodings’ superiority in expressivity

as opposed to symbolic encodings, there are several key points to address where we believe further

research is needed to further establish our observation.

5.3.1 Data Limitations

Although data from 190 patients is not considered a small number in computational biology as

clinical data is complex to collect, it is insufficient to say that the model has generalised the

relationship between TCR repertoires and cancer. It has been seen that individuals with the

same ethnicity will have a similar immune system as opposed to individuals from different ethnic

backgrounds [20, 40, 86, 87]. Our data could be biased in the sense that our data is collected from

patients with the same ethnicity, as data collection has been performed in the UK only. Thus,

most patients in this study are expected to have similar ethnic backgrounds.

33

Furthermore, we have seen that TCR-BERT has overfitted as there are too many parameters to

train given the amount of labelled data. We propose two methods which could help overcome

this: imposing a larger L2 penalty, where the best L2 penalty can be chosen from a K-Fold Cross

Validation with Grid Search. The second method introduces more data, which can also help the

downstream model for SCEPTR to understand the relationship between TCRs and cancer better.

5.3.2 Quality of Embedding Space

As seen in Section 5.2.2, different downstream classifier instances that use SCEPTR’s encodings

give significantly different models. For example, some of the models’ weights are almost orthogonal

to each other, as seen in Figure A.39 and A.40. This demonstrates that SCEPTR’s embedding

space does not fully capture disease specificity.

Although this is an expected phenomenon as the dataset used to train SCEPTR has not labelled

TCR specificity [69], it would be more desirable for a TCR embedding space to assign spatial

locality based on specificity. This applies to identifying whether a patient is diseased and other

TCR problems, such as pairing alpha and beta chains and pairing TCRs with antigens.

Yet, this limitation does not reduce the performance of SCEPTR’s downstream model, as we have

seen impressive results in classifying whether a patient has cancer.

5.3.3 Computational Resources

Since this is a student’s project, we ran our code under a computer cluster shared amongst all

students. This means there are certain restrictions on how extensive our experiments can be.

Therefore, we are unable to complete a grid search on the best set of hyperparameters, as we

are unable to occupy multiple computers with the exact specification as mentioned previously in

section 4.3.1 to run the training for six different encoding types, especially considering TCR-BERT

takes a large amount of GPU memory and time to run.

It would be more desirable if each encoding method had its own set of hyperparameters so that

the choice of hyperparameters does not influence the model’s performance, which relates to the

encoding space’s expressivity.

We believe that this problem is particularly predominant within TCR-BERT. Its downstream

model requires regularisation through the weight decay parameter. However, the best value for

this hyperparameter has not been cross-validated, and the l2-penalty used, 0.25, is only a rough

guess. It is possible that TCR-BERT could perform better than SCEPTR as the encoding model;

however, this will be verified in future works. We will propose methods to compare TCR-BERT’s

and SCEPTR’s expressivity in section 5.4.4.

5.4 Future Works

We conclude our findings with a proposal for future works that could be done to further this

research. We focus on three aspects: increasing the robustness of our methodology to compare

symbolic and subsymbolic encodings, improving the classification scores and the interpretability

of the models. We will also provide ideas on how to tackle TCR-BERT overfitting.

34

Figure 5.2: Fine Tuning Regime for Encoding Models

5.4.1 Fine Tuning Encoding Models

We have not fine-tuned TCR-BERT or SCEPTR during our experiments to create a more desirable

output embedding space. This is due to demonstrating robustness with encoding models and GPU

memory limitations. These embedding models are a generalised method of representing TCRs

numerically whilst respecting neighbouring TCRs, which is not something that symbolic encodings

can do. They are not specially designed for disease identification. We believe that fine-tuning these

models towards disease identification can mitigate the problems with embedding space quality as

discussed in section 5.3.2.

During our experiments, we attempted to fine-tune models naively by making all parameters in

the encoding trainable, and we observed an explosion in GPU memory consumed. This memory

cannot be released before one backpropagation step, and this problem is particularly prevalent with

TCR-BERT as it has many parameters. This causes a large amount of gradients to be accumulated

during the training step.

This problem has also been observed with conventional LLM fine-tuning, such as the 65 billion

parameter LLM Llama requires over 780GB memory to fine-tune [55]. We believe that using fine-

tuning tricks such as Low-Rank Adaptation (LoRA) [88] or Quantised LoRA [89] can significantly

reduce the memory footprint required. Yet, the amount of TCR instances within one repertoire

can be large, meaning that the memory footprint cannot be estimated unless we know the number

of instances within the largest repertoire.

Whilst we conjecture that being able to fine-tune the model can improve the accuracy obtained,

we also argue that the amount of data required to fine-tune the model exceeds what we have

for our dataset. TCR-BERT is a 57 million-parameter model, and SCEPTR has 153 thousand

parameters. This means that if we have only 190 patients’ repertoire data, it will most probably

cause the model to overfit quickly, as we have seen that TCR-BERT’s 1538 parameter downstream

35

model overfitted quickly.

To mitigate overfitting due to a lack of data, we propose fine-tuning one LLM by incorporating

more TCRs from patients infected with diseases other than cancer. Using these data, we can train

a series of downstream classifiers, each with the same architecture as ours.

Since we know what disease the patient is infected with, we can train each model so each model

identifies one disease in a One-vs-All manner. During each update step, we update the classifying

and embedding models. We must update each classifier sequentially rather than completing the

training for one classifying model and going on to the next. This prevents the encoding model

from forgetting knowledge from the first processed disease. We believe this training regime would

work because it leverages data from multiple diseases and encourages the model to rearrange its

hyperspace such that the TCRs are placed in the hyperspace according to its disease specificity.

A diagram of this training paradigm is attached as Figure 5.2. However, this approach does not

mitigate the problem with GPU memory consumption.

5.4.2 Patient Data

It has been observed in [31] that when the patient’s background, such as ethnicity, age, gender

and other factors, are included in the consideration of classifying whether the patient is infected

with COVID-19, Lupus or HIV, this will increase the AUC of the classification rather than simply

analysing TCRs and B cell Receptors (BCRs).

Given this promise, we believe that allowing the model to know more about the patient enables the

model to make well-informed decisions regarding whether the patient has cancer. This also follows

what is known in biology, since the likelihood of having cancer is positively correlated with age

[90], and is dependent on family background, such as a strong family history of cancer increases

the risk of cancer [91].

To incorporate this information into our model, we could concatenate the vector representing the

patient’s background onto the patient’s bag-representing vector. This assumes that the patient

background vector is scaled within an appropriate range.

Our data also comes from patients exhibiting lung cancer symptoms. Whilst it is aspired that we

can use our model to find an asymptomatic cancer patient, classifying between a healthy patient and

an asymptomatic cancer patient’s TCR repertoire is a more difficult task than what we attempted.

5.4.3 Model Verification

We propose two tests of varying difficulty to verify whether the model has learnt a generalisable

relationship, whereby the positively predictive TCRs are assigned a non-zero weighting. Both tests

rely on having acquired TCRs known to be cancer-targeting, which we will denote as ‘the cancer

TCR’. This data should not be difficult to obtain, where we found 182 TCRs that are known, with

high confidence, to be cancer-targeting in VDJdb [59].

We name the more straightforward test the classifying test, demonstrated graphically in Figure

5.3. We perform this test by artificially creating a patient’s TCR repertoire by gathering control

TCRs and grouping them into one file. We assert that this set of control TCRs should not have

been involved in the model’s training. We will then pass this augmented repertoire into the model,

36

Figure 5.3: Classifying Test

where we should expect the output of the model, p, i.e. the probability of having cancer, to be

lesser than 0.5, corresponding to a negative prediction.

Subsequently, we add the cancer TCRs into the augmented repertoire, simulating a cancer patient’s

blood draw. We expect the model to output a probability higher than p and higher than 0.5,

corresponding to a positive prediction. This is because we know cancer-targeting TCRs exist

within the repertoire, which can only occur when the patient has cancer.

The second test is the score test, which is more complicated than the classifying test. For a model

to pass this test, we expect its scoring layer to output a high score for the cancer TCR. We can

objectively review whether this score is high by comparing it with the highest score the model

outputted when given a TCR repertoire. This comparison can be a percentage difference between

this highest score and the score for the cancer TCRs.

The intuition for this test is that if the model outputs a similarly high score for the cancer-targeting

TCR, then this demonstrates evidence that the model has captured the relationship between TCRs

and cancer. We argue that this is more difficult than the classifying test as this is also a test for

the encoding model. If an encoding model does not know TCR specificity, it will probably fail the

score test as it does not assign spatial locality by TCR specificity.

Provided that the model has passed these two tests, it poses a strong argument that the model has

acquired a generalisable relationship between TCRs and cancer. This is because different cancer

types and patients lead to different TCRs being proliferated, so passing these two tests is not

simple.

5.4.4 Usage of TCR-BERT

As we cannot create a convincingly generalisable performance when we use TCR-BERT as the

upstream encoding model, we propose using two algorithms for reduction on TCR-BERT’s feature

37

Figure 5.4: TCR-BERT’s Encoder Training Paradigm

space to reduce the trainable parameters in the downstream classifier.

AutoEncoders

Autoencoders are a pair of neural networks that are trained simultaneously. The encoder takes

in the raw embedding of 768 dimensions and downscales it to a lower dimension. In contrast, the

decoder takes this lower-dimension vector and aims to restore it to its original input.

After training, we will obtain a lower-dimension vector from the encoder. By design, this vector

will represent the TCR similarly to the original output from TCR-BERT. Note that this vector

will not be as expressive as the output from TCR-BERT as there are information lost.

After training the encoder, we freeze its parameters and use the encoded vector to train the

downstream classifier. This can significantly reduce the amount of parameters in the classifier. A

diagram of the training paradigm for the autoencoder and the downstream classifier is as Figure

5.4.

To train the encoder, we argue that using the same TCRs we will use for training the downstream

classifier will not cause data leakage as long as we do not include the test set in training the

autoencoder. This is because the encoder does not know the specificity of the TCR, as its end goal

is to encode TCRs onto a lower dimension. Hence, the encoder never knows the specificity of the

TCR and thus cannot assign spatial locality for TCRs with the same specificity.

Johnson-Lindenstrauss Lemma

The Johnson-Lindenstrauss Lemma provides a simplified approach as the AutoEncoder. The

Lemma is defined as below [92, 93]:

38

Lemma 3 (Johnson-Lindenstrauss) Let P ∈ Rd be a set of n points, ϵ > 0 be a parameter

and k = (1/ϵ2) log n. If Q, a k < n dimensional space, is a subspace of P obtained from a linear

projection, then all pairwise distanced in P are within 1−ϵ close to each other in Q with probability

at least 0.5.

Whilst we do not provide the proof of the Johnson-Lindenstrauss lemma here, both the classical

proof [92] and the simplified proof [93] used a random projection. Given this, we can construct a

linear map which contains randomly initialised values taken from a standard uniform distribution

and map each output embedding generated by TCR-BERT with this linear map so the output

embedding is now in a lower dimension Q.

Using the lemma, we are guaranteed that the pairwise distance of datapoints in this lower-

dimensional subspace is somewhat close to the pairwise distance of the same datapoints in the

high-dimension subspace, even with a random projection. This means the geometric properties of

how TCR-BERT represents TCRs are ϵ preserved in the lower dimension subspace. Hence, a linear

map can reduce the minimum number of parameters needed to model TCR-BERT’s hyperspace.

5.4.5 Autoencoders for symbolic encodings

Although we showed that symbolic encodings are not as expressive as subsymbolic encodings in

this study, taking a feature-wise average to obtain a numerical representation of the TCR CDR3

sequence may not be the most effective way of representing it in a vector. We have seen in MINN-

SA [23] that they used TESSA [44] to encode the Atchley matrices onto a 30-dimensional vector,

which could be a better way to represent the TCRs numerically.

However, we observed that TESSA is poor in encoding TCRs sampled from a tumour environment,

and TESSA oversees the language-like property of TCRs, which is why we did not use TESSA in

our study. We believe that if there is another autoencoder for each of the symbolic encodings we

used, utilising them to encode the matrix representing the CDR3 sequences into a vector could be

better than simply taking an average.

That said, it could still be a worthy study to use TESSA on this problem should time allow.

39

Chapter 6

Conclusions

We conclude this report by objectively reviewing how much we met the goals set in our Research

Aims in Section 2.3. We will also summarise our achievements in this research project and the

potential future developments that could be done to this project.

6.1 Summary of Achievements

In this report, we have demonstrated with novelty that representing TCRs numerically using

large language models’ embedding hyperspace provides more robust and better performances than

physico-chemical properties.

We showed this through a simple 2-layered neural network, where we spotted three significant

differences between the performance of downstream classifiers that use subsymbolic and symbolic

encoding spaces.

1. The classifier which uses TCRs encoded from physico-chemical properties cannot descend in

training loss as effectively as the model which takes in large language model embeddings.

This demonstrates that there are no minima to reach in this optimisation problem, or the

minima are hard to reach when we use physico-chemical properties to encode TCRs. This

observation is not made when we use large language model embeddings to encode TCRs.

2. Ignoring TCR-BERT’s downstream model’s performance due to overfitting caused by over-

determination, most symbolic encodings’ downstream models have a significantly lower test

set AUC than SCEPTR’s downstreammodel’s test set AUC. This demonstrates that SCEPTR’s

downstream model is more powerful than symbolic encodings. Although Kidera Factor’s

downstream model’s mean test set AUC was similar to SCEPTR’s, it cannot match the

maximum AUC that SCEPTR’s downstream model reached.

3. We used a random encoding generated from a random uniform distribution from 0 and 1

to form a 5-dimensional vector as a ‘control’ symbolic encoding. Since random encoding is

not designed to provide meaning for each amino acid as opposed to physico-chemical prop-

erties, which provide high-level meanings for each amino acid, we expect random encoding

to perform worst among all symbolic encodings.

40

However, this has not been observed, whereby the random encoding occasionally performs

better than physico-chemical encodings. This suggests evidence that physico-chemical en-

codings are as expressive as random encodings.

We showed robustness in the subsymbolic encoding methods through their downstream model’s

performance, such as high accuracies and AUC. The two subsymbolic encoding methods are robust

since the encoding models were never trained with disease specificity. Yet, they showed promising

results with high AUC and accuracy in the downstream model.

However, SCEPTR does not assign spatial locality based on TCR specificity. This can be concluded

as different training instances’ best-performing checkpoints have significantly different model pa-

rameters, which the cosine similarity and Euclidean distance can verify. We showed that on certain

occasions, the scoring layer’s weights are orthogonal to the classifying layer’s weights.

We used the Area Under the Receiver Operating Characteristic Curve (AUC) to demonstrate

that the subsymbolic encodings perform better than the symbolic encodings if we keep the model

architecture as an invariant factor within this comparison.

TCR-BERT’s downstream classifier did not have a better mean AUC than the symbolic encodings.

It had too many trainable parameters compared to the training data. On the other hand, SCEPTR,

a model that casts TCRs onto a lower dimension space, performed extraordinarily. One of its

downstream models had a 100% AUC in the test and evaluation sets, demonstrating its robustness.

We also interpreted the signals that this SCEPTR’s downstream model picked up. We noticed

that the downstream model preferred beta chains over alpha chains in finding whether a patient

has cancer, which aligns with what we know in biology, as beta chains are thought to contain more

information about TCR specificity than alpha chains. The model also picked up chains that are

expanded within multiple patients, even considering that the model never knew how expanded a

TCR is within a repertoire.

In particular, this simple 2-layer neural network model with only 130 trainable parameters trained

on SCEPTR’s encodings has achieved state-of-the-art AUC when we average its AUC across the

ten training instances. The testing AUC and evaluation set AUC are 95% and 98%, respectively,

in the early stages of non-small cell lung cancer.

Although, arguably, we did not use the same dataset as previous works, the simplicity of our model

and extreme results, such as a 100% AUC on both the test set and evaluation set, have shown

robustness in our work.

In conclusion, our research has shed light on using subsymbolic encodings in cancer prediction. We

have shown that it is more robust and expressive than symbolic encodings with novelty. Whilst

we do not know how the embedding models represent TCRs numerically, we have observed that

the downstream classifier of one optimally fitted instance follows what is known to be biologically

accurate.

6.2 Summary of Future Works

To further our research in this paper, we have proposed five different directions as the future works.

These five directions are in 3 directions: improving the accuracy and predictability of our algorithm

41

in TCR cancer prediction (Point 1), evaluating whether subsymbolic encodings are more expressive

than symbolic encodings (Points 4, 5) and increasing the robustness of our study (Points 2, 3).

1. The encoding models are not informed about disease specificity. Therefore, we suggested

that fine-tuning the encoding models on disease specificity could help the model understand

how to encode TCRs better. This could help the encoding model create better embeddings

to solve other problems, such as alpha and beta chain pairing.

2. Since our data is collected from 6 hospitals in the United Kingdom. Therefore, the data

might potentially be biased. This is because it is expected that the patients involved in

this study will share a similar genetic background. This leads to a weakness in our model,

where our model might not perform equally well on patients with a significantly different

genetic background. We propose that collecting more data from other patients with a broader

background could improve the robustness of the classifier.

Our data also comes from lung cancer patients who exhibited symptoms. A future extension

of our work could be using asymptomatic patients to train our model.

3. We propose that we verify our models with the use of TCRs that are known to be cancer-

targeting. We proposed two tests of varying difficulty to verify the model’s knowledge. One

focuses on making sure the model picks up on the TCR known to be cancer-targeting, and

another test focuses on making sure the score for the cancer-targeting TCR is high.

4. We have seen that TCR-BERT’s downstream model overfitted quickly. This is because

TCR-BERT has a high dimensional output, which causes the downstream classifier to have

many trainable parameters compared to the labels we have. We propose using two reduction

downstream algorithms: the Johnson-Lindenstrauss Lemma, which involves a random linear

map, and an autoencoder. We believe that we can use the training data for the encoder to

be the same as the data that trains the classifier since there is no data leakage of disease

specificity to the encoder.

5. We created vector representations of CDR3 sequences from TCR-BERT’s embedding and

the symbolic encodings by taking a feature-wise average. This may not be the best way to

obtain a vector representation of a CDR3 sequence. Therefore, we believe we could use an

autoencoder explicitly trained to transform the matrix representing the CDR3 sequence into

a vector. However, this autoencoder must capture amino acids’ language-like structure.

We have proposed methods to achieve these future works in Section 5.4.

42

Appendix A

Figures & Tables

A.1 Train-Test Split

We enclose the statistics obtained from each model’s training and testing phase. Table A.1 illus-

trates the amount of repeats we took for each encoding method.

Repeats Encoding Method
5 TCR-BERT, Physico-Chemical Encodings, Random Encoding
10 SCEPTR

Table A.1: Repeats taken for each encoding method

Note that vertical lines on the graphs denote the best checkpoint algorithm that has been selected.

This checkpoint is selected based on the best test set AUC. Each entry in the confusion matrix is

in the form of µ± σ, where µ is the mean and σ is the standard deviation of that entry from each

repeat’s best checkpoints’ performance.

43

A.1.1 TCR-BERT

Figure A.1: Loss & Accuracy on Training and Test Sets for each Epoch

Figure A.2: Loss & Accuracy on Training and Test Sets Averaged on Repeats

44

Figure A.3: AUC on Training and Test Sets

Figure A.4: AUC Averaged on Training and Test Sets

45

Figure A.5: AUC Curve for each repeated run

Figure A.6: Confusion Matrix with Mean and Standard Deviation Across Repeats

46

A.1.2 SCEPTR

Figure A.7: Loss & Accuracy on Training and Test Sets for each Epoch

Figure A.8: Loss & Accuracy on Training and Test Sets Averaged on Repeats

47

Figure A.9: AUC on Training and Test Sets

Figure A.10: AUC Averaged on Training and Test Sets

48

Figure A.11: AUC Curve for each repeated run

Figure A.12: Confusion Matrix with Mean and Standard Deviation Across Repeats

49

A.1.3 Atchley Factors

Figure A.13: Loss & Accuracy on Training and Test Sets for each Epoch

Figure A.14: Loss & Accuracy on Training and Test Sets Averaged on Repeats

50

Figure A.15: AUC on Training and Testing Sets

Figure A.16: AUC Averaged on Training and Test Sets

51

Figure A.17: AUC Curve for each repeated run

Figure A.18: Confusion Matrix with Mean and Standard Deviation Across Repeats

52

A.1.4 Kidera Factors

Figure A.19: Loss & Accuracy on Training and Test Sets for each Epoch

Figure A.20: Loss & Accuracy on Training and Test Sets Averaged on Repeats

53

Figure A.21: AUC on Training and Test Sets

Figure A.22: AUC Averaged on Training and Test Sets

54

Figure A.23: AUC Curve for each repeated run

Figure A.24: Confusion Matrix with Mean and Standard Deviation Across Repeats

55

A.1.5 Amino Acid Properties

Figure A.25: Loss & Accuracy on Training and Test Sets for each Epoch

Figure A.26: Loss & Accuracy on Training and Test Sets Averaged on Repeats

56

Figure A.27: AUC on Training and Testing Sets

Figure A.28: AUC Averaged on Training and Test Sets

57

Figure A.29: AUC Curve for each repeated run

Figure A.30: Confusion Matrix with Mean and Standard Deviation Across Repeats

58

A.1.6 Random Embedding

Figure A.31: Loss & Accuracy on Training and Test Sets for each Epoch

Figure A.32: Loss & Accuracy on Training and Test Sets Averaged on Repeats

59

Figure A.33: AUC on Training and Testing Sets

Figure A.34: AUC Averaged on Training and Test Sets

60

Figure A.35: AUC Curve for each repeated run

Figure A.36: Confusion Matrix with Mean and Standard Deviation Across Repeats

61

A.2 Evaluation Set (SCEPTR)

Figure A.37: AUC Curve with Evaluation Set

Figure A.38: Confusion Matrix with Evaluation Set

62

A.3 Interpretability

A.3.1 Positively Predictive TCRs

V/J Calls Occurance
TRAV35 24
TRAV27 1
TRAV2 1
TRAV17 1
TRAV38-1 1
TRAV38-2/DV8 2
TRAV10 1
TRAV30 1
TRAJ54 19
TRAJ30 1
TRAJ32 4
TRAJ8 1
TRAJ44 1
TRAJ47 3
TRAJ42 1
TRAJ13 1
TRAJ29 1
TRBV2 292
TRBJ1-3 9
TRBJ2-2 73
TRBJ1-1 50
TRBJ2-4 15
TRBJ1-2 52
TRBJ2-3 33
TRBJ1-4 4
TRBJ2-7 19
TRBJ2-1 18
TRBJ2-5 19

Table A.2: V calls and J calls in TCRAB chains

V Call J Call CDR3 Duplicate Counts Weighting Assigned
TRAV35 TRAJ32 CAGRGGATNKLIF 1 0.019446
TRAV35 TRAJ32 CAGRGGATNKLIF 1 0.006871
TRBV2 TRBJ2-2 CASRQGENTGELFF 1 0.082592
TRBV2 TRBJ2-2 CASRQGENTGELFF 1 0.085613
TRBV2 TRBJ1-2 CASSFRGGADEGYTF 16 0.043844
TRBV2 TRBJ1-2 CASSFRGGADEGYTF 32 0.034325
TRBV2 TRBJ2-2 CASSGPLLTGELFF 1 0.019762
TRBV2 TRBJ2-2 CASSGPLLTGELFF 1 0.022783
TRBV2 TRBJ2-2 CASNLGQGDTGELFF 1 0.049302
TRBV2 TRBJ2-2 CASNLGQGDTGELFF 1 0.036761
TRBV2 TRBJ2-2 CASGGTGETGELFF 7 0.040601
TRBV2 TRBJ2-2 CASGGTGETGELFF 1 0.028059
TRBV2 TRBJ1-2 CASRGLTGNYGYTF 12 0.040321
TRBV2 TRBJ1-2 CASRGLTGNYGYTF 2 0.043343
TRBV2 TRBJ1-2 CASRGLTGNYGYTF 1 0.042006
TRBV2 TRBJ1-2 CASRGLTGNYGYTF 11 0.030801

Table A.3: Expanded TCRs. Each row with the same V Call, J Call and CDR3 sequences is
extracted from different patients

63

A.3.2 Negatively Predictive TCRs

V/J Call Occurance
TRAV35 90
TRAJ54 66
TRAJ23 3
TRAJ47 12
TRAJ43 1
TRAJ57 1
TRAJ32 1
TRAJ44 1
TRAJ4 2
TRAJ37 2
TRAJ13 1
TRBV2 51
TRBJ2-2 23
TRBJ2-3 1
TRBJ1-1 12
TRBJ1-2 13
TRBJ2-1 1
TRBJ2-4 1

Table A.4: V calls and J calls in TCRAB chains

CDR3 Duplicate Counts Weighting Assigned

CAFQGAQKLVF 1 0.04183

CAFQGAQKLVF 2 0.035601

CAVNGGAQKLVF 1 0.030562

CAVNGGAQKLVF 1 0.03274

CAVSGGNKLVF 1 0.030304

CAVSGGNKLVF 1 0.032482

CATGGAQKLVF 1 0.026204

CATGGAQKLVF 3 0.032521

CAVSGGAQKLVF 1 0.026099

CAVSGGAQKLVF 1 0.01987

CAFRGAQKLVF 1 0.025121

CAFRGAQKLVF 1 0.027299

CAGGAQKLVF 2 0.019724

CAGGAQKLVF 1 0.025414

CAMSGGAQKLVF 1 0.011908

CAMSGGAQKLVF 4 0.018225

CAYSGGAQKLVF 1 0.008719

CAYSGGAQKLVF 1 0.015036

CAVGAQKLVF 1 0.00428

CAVGAQKLVF 1 0.010596

CAGGGAQKLVF 1 0.045068

CAGGGAQKLVF 1 0.056986

CAVLGAQKLVF 1 0.035886

CAVLGAQKLVF 1 0.048431

64

CAVMGAQKLVF 1 0.02752

CAVMGAQKLVF 1 0.039438

CALGGAQKLVF 2 0.02337

CALGGAQKLVF 1 0.031777

CVIQGAQKLVF 1 0.021921

CVIQGAQKLVF 2 0.034466

CAMRGAQKLVF 1 0.003204

CAMRGAQKLVF 1 0.011611

CAVEGAQKLVF 1 0.045849

CAVEGAQKLVF 1 0.04936

CAVGGGGKLIF 1 0.01979

CAVGGGGKLIF 1 0.023928

CAPQGAQKLVF 1 0.008132

CAPQGAQKLVF 1 0.011643

CAAEGAQKLVF 2 0.005793

CAAEGAQKLVF 2 0.009931

CAARGAQKLVF 1 0.018378

CAARGAQKLVF 4 0.019005

CAVGRGAQKLVF 2 0.001662

CAVGRGAQKLVF 1 0.002289

CAGVQGAQKLVF 1 0.001227

CAGVQGAQKLVF 2 0.001853

CAGGGGAQKLVF 1 0.025808

CAGGGGAQKLVF 1 0.01958

CAGGGGAQKLVF 1 0.031498

CAVGYGNKLVF 2 0.02016

CAVGYGNKLVF 1 0.013932

CAVGYGNKLVF 1 0.02585

CAVGQGAQKLVF 1 0.015286

CAVGQGAQKLVF 1 0.009057

CAVGQGAQKLVF 4 0.017464

CAARGGAQKLVF 1 0.01278

CAARGGAQKLVF 1 0.014958

CAARGGAQKLVF 1 0.019097

CAVVGGNKLVF 2 0.010398

CAVVGGNKLVF 2 0.012576

CAVVGGNKLVF 1 0.016088

CAVGGYNKLIF 1 0.007118

CAVGGYNKLIF 2 0.000889

CAVGGYNKLIF 8 0.013435

CAMKGAQKLVF 2 0.00426

CAMKGAQKLVF 2 0.006439

CAMKGAQKLVF 1 0.010577

CAVGGFQKLVF 2 0.002212

CAVGGFQKLVF 1 0.007902

65

CAVGGFQKLVF 3 0.008528

CAVRGGAQKLVF 1 0.00992

CAVRGGAQKLVF 1 0.021838

CAVRGGAQKLVF 1 0.022465

CAEGAQKLVF 1 0.016712

CAEGAQKLVF 2 0.020224

CAEGAQKLVF 2 0.02085

CASQGAQKLVF 1 0.034101

CASQGAQKLVF 1 0.027873

CASQGAQKLVF 1 0.03628

CASQGAQKLVF 1 0.039791

CASQGAQKLVF 1 0.040418

CAASGGAQKLVF 2 0.021184

CAASGGAQKLVF 1 0.014956

CAASGGAQKLVF 2 0.023363

CAASGGAQKLVF 3 0.026874

CAASGGAQKLVF 2 0.027501

CAVKGAQKLVF 1 0.028551

CAVKGAQKLVF 2 0.022322

CAVKGAQKLVF 1 0.030729

CAVKGAQKLVF 3 0.034868

CAAQGAQKLVF 2 0.011213

CAAQGAQKLVF 2 0.01962

CAAQGAQKLVF 2 0.023132

CAAQGAQKLVF 2 0.023758

CAVGGNKLVF 4 0.005764

CAVGGNKLVF 1 0.014171

CAVGGNKLVF 4 0.017682

CAVGGNKLVF 1 0.018309

CAVQGAQKLVF 1 0.048805

CAVQGAQKLVF 4 0.042576

CAVQGAQKLVF 1 0.050983

CAVQGAQKLVF 1 0.054495

CAVQGAQKLVF 1 0.055121

Table A.5: Expanded TCRs (with only alpha chain CDR3 se-

quences). Each row with the same VDR3 sequences is sampled

from different patients.

66

V Call J Call CDR3 Duplicate Counts Weightings Assigned
TRAV35 TRAJ54 CAVQGAQKLVF 1 0.121364
TRAV35 TRAJ54 CAVQGAQKLVF 1 0.097269
TRAV35 TRAJ54 CAGQRGAQKLVF 2 0.06756
TRAV35 TRAJ54 CAGQRGAQKLVF 3 0.065152
TRAV35 TRAJ54 CAGQRGAQKLVF 3 0.061006
TRAV35 TRAJ47 CAGQYGNKLVF 1 0.02936
TRAV35 TRAJ47 CAGQYGNKLVF 4 0.084459
TRAV35 TRAJ54 CAGLQGAQKLVF 1 0.02247
TRAV35 TRAJ54 CAGLQGAQKLVF 2 0.042526
TRAV35 TRAJ54 CAGLQGAQKLVF 1 0.019193
TRAV35 TRAJ54 CAGQGGAQKLVF 1 0.098451
TRAV35 TRAJ54 CAGQGGAQKLVF 2 0.098451
TRAV35 TRAJ54 CAGQGGAQKLVF 1 0.074357
TRAV35 TRAJ47 CAGEYGNKLVF 6 0.038398
TRAV35 TRAJ47 CAGEYGNKLVF 1 0.016374
TRAV35 TRAJ47 CAGEYGNKLVF 1 0.014304
TRAV35 TRAJ54 CAGRGGAQKLVF 1 0.067308
TRAV35 TRAJ54 CAGRGGAQKLVF 1 0.066102
TRAV35 TRAJ54 CAGRGGAQKLVF 1 0.064032
TRAV35 TRAJ54 CAGLYGAQKLVF 1 0.04465
TRAV35 TRAJ54 CAGLYGAQKLVF 1 0.022625
TRAV35 TRAJ54 CAGQKGAQKLVF 1 0.041444
TRAV35 TRAJ54 CAGQKGAQKLVF 1 0.020626
TRAV35 TRAJ54 CAGIQGAQKLVF 1 0.040243
TRAV35 TRAJ54 CAGIQGAQKLVF 1 0.039036
TRAV35 TRAJ54 CAGQLGAQKLVF 1 0.036714
TRAV35 TRAJ54 CAGQLGAQKLVF 1 0.035507
TRAV35 TRAJ54 CAGRRGAQKLVF 1 0.0356
TRAV35 TRAJ54 CAGRRGAQKLVF 1 0.032323
TRAV35 TRAJ54 CAGQEGAQKLVF 2 0.009764
TRAV35 TRAJ54 CAGQEGAQKLVF 1 0.008558
TRAV35 TRAJ54 CAGLRGAQKLVF 1 0.002284
TRAV35 TRAJ54 CAGLRGAQKLVF 1 0.001078
TRAV35 TRAJ54 CAGPRGAQKLVF 1 0.012101
TRAV35 TRAJ54 CAGPRGAQKLVF 2 0.010031
TRAV35 TRAJ54 CAGQGAQKLVF 3 0.09762
TRAV35 TRAJ54 CAGQGAQKLVF 3 0.096413
TRAV35 TRAJ54 CAGQGAQKLVF 3 0.188686
x x CAGQGAQKLVF 2 0.037973
TRAV35 TRAJ54 CANQGAQKLVF 1 0.071774
x x CANQGAQKLVF 1 0.012621
TRAV35 TRAJ54 CAGRGAQKLVF 1 0.088424
x x CAGRGAQKLVF 1 0.035873
TRAV35 TRAJ54 CAGEGGAQKLVF 1 0.055349
x x CAGEGGAQKLVF 1 0.014777
TRAV35 TRAJ54 CAGEGAQKLVF 1 0.102333
x x CAGEGAQKLVF 1 0.034023
x x CAGEGAQKLVF 1 0.04243
TRAV35 TRAJ54 CAIQGAQKLVF 1 0.07486
x x CAIQGAQKLVF 3 0.019715
x x CAIQGAQKLVF 1 0.013487

Table A.6: Expanded TCRs. Each row with the same V Call, J Call and CDR3 sequences is
extracted from different patients

67

A.3.3 Similarity

Figure A.39: Similarity between different instances’ scoring layer’s weights

Figure A.40: Similarity between different instances’ classifying layer’s weights

68

Figure A.41: Similarity between same instances’ scoring and classifying layer’s weights

69

Appendix B

GitHub Repository

The code for this project and all experimental results are available on a public GitHub repository.

This repository is under the MIT License, where instructions on how to use the repository, including

information on how to install the virtual environment, are in the README.md

https://github.com/RcwYuen/TCR-Cancer-Prediction

70

https://github.com/RcwYuen/TCR-Cancer-Prediction

Bibliography

[1] K. E. Hellstrom and I. Hellstrom, “From the hellstrom paradox toward cancer cure,” Progress

in Molecular Biology and Translational Science, p. 1–24, 2019.

[2] F. H. Igney and P. H. Krammer, “Death and anti-death: Tumour resistance to apoptosis,”

Nature Reviews Cancer, vol. 2, p. 277–288, Apr 2002.

[3] M. Roser and H. Ritchie, “Cancer, https://ourworldindata.org/cancer#cancer-is-one-of-the-

leading-causes-of-death,” Jul 2015.

[4] S. McPhail, S. Johnson, D. Greenberg, M. Peake, and B. Rous, “Stage at diagnosis and early

mortality from cancer in england,” British Journal of Cancer, vol. 112, Mar 2015.

[5] R. S. Sealfon, A. K. Wong, and O. G. Troyanskaya, “Machine learning methods to model multi-

cellular complexity and tissue specificity,” Nature Reviews Materials, vol. 6, no. 8, p. 717–729,

2021.

[6] B. Hunter, S. Hindocha, and R. W. Lee, “The role of artificial intelligence in early cancer

diagnosis,” Cancers, vol. 14, no. 6, p. 1524, 2022.

[7] L. Nguyen, A. V. Hoeck, and E. Cuppen, “Machine learning-based tissue of origin classification

for cancer of unknown primary diagnostics using genome-wide mutation features,” Nature

Communications, vol. 13, no. 4013, 2022.

[8] I. Moon, J. LoPiccolo, and A. Gusev, “Machine learning for improved clinical management of

cancers of unknown primary,” Nature Medicine, vol. 29, pp. 1920–1921, 2023.

[9] P. Freitas, F. Silva, J. V. Sousa, R. M. Ferreira, C. Figueiredo, T. Pereira, and H. P. Oliveira,

“Machine learning-based approaches for cancer prediction using microbiome data,” Scientific

Reports, vol. 13, no. 1, 2023.

[10] G. Menna, G. Piaser Guerrato, L. Bilgin, G. M. Ceccarelli, A. Olivi, and G. M. Della Pepa,

“Is there a role for machine learning in liquid biopsy for brain tumors? a systematic review,”

International Journal of Molecular Sciences, vol. 24, no. 11, p. 9723, 2023.

[11] S. Connal, J. M. Cameron, A. Sala, P. M. Brennan, D. S. Palmer, J. D. Palmer, H. Perlow, and

M. J. Baker, “Liquid biopsies: The future of cancer early detection,” Journal of Translational

Medicine, vol. 21, no. 1, 2023.

[12] L. Liu, X. Chen, O. O. Petinrin, W. Zhang, S. Rahaman, Z.-R. Tang, and K.-C. Wong,

“Machine learning protocols in early cancer detection based on liquid biopsy: A survey,” Life,

vol. 11, no. 7, p. 638, 2021.

71

https://ourworldindata.org/cancer#cancer-is-one-of-the-leading-causes-of-death
https://ourworldindata.org/cancer#cancer-is-one-of-the-leading-causes-of-death

[13] Y. Said, A. A. Alsheikhy, T. Shawly, and H. Lahza, “Medical images segmentation for lung

cancer diagnosis based on deep learning architectures,” Diagnostics, vol. 13, no. 3, p. 546,

2023.

[14] X. Jiang, Z. Hu, S. Wang, and Y. Zhang, “Deep learning for medical image-based cancer

diagnosis,” Cancers, vol. 15, no. 14, p. 3608, 2023.

[15] D. Beshnova, J. Ye, O. Onabolu, B. Moon, W. Zheng, Y.-X. Fu, J. Brugarolas, J. Lea,

and B. Li, “De novo prediction of cancer-associated t cell receptors for noninvasive cancer

detection,” Science Translational Medicine, vol. 12, no. 557, 2020.

[16] M. Cavanagh and E. Gwyer Findlay, “T-cell activation.” British Society for Immunology,

2023.

[17] M. L. Russell, A. Souquette, D. M. Levine, S. A. Schattgen, E. K. Allen, G. Kuan, N. Simon,

A. Balmaseda, A. Gordon, P. G. Thomas, and et al., “Combining genotypes and t cell receptor

distributions to infer genetic loci determining v(d)j recombination probabilities,” eLife, vol. 11,

2022.

[18] LibreTexts, “20.7a: Clonal selection and t-cell differentiation.” Medicine LibreTexts, 2023.

[19] S. Valpione, P. A. Mundra, E. Galvani, L. G. Campana, P. Lorigan, F. De Rosa, A. Gupta,

J. Weightman, S. Mills, N. Dhomen, and et al., “The t cell receptor repertoire of tumor

infiltrating t cells is predictive and prognostic for cancer survival,” Nature Communications,

vol. 12, no. 1, 2021.

[20] Z. Sethna, G. Isacchini, T. Dupic, T. Mora, A. M. Walczak, and Y. Elhanati, “Population

variability in the generation and selection of t-cell repertoires,” PLOS Computational Biology,

vol. 16, no. 12, 2020.

[21] D. S. Bortone, M. G. Woodcock, J. S. Parker, and B. G. Vincent, “Improved t-cell recep-

tor diversity estimates associate with survival and response to anti–pd-1 therapy,” Cancer

Immunology Research, vol. 9, no. 1, p. 103–112, 2021.

[22] M. Li, C. Zhang, S. Deng, L. Li, S. Liu, J. Bai, Y. Xu, Y. Guan, X. Xia, L. Sun, and et al.,

“Lung cancer-associated t cell repertoire as potential biomarker for early detection of stage i

lung cancer,” Lung Cancer, vol. 162, p. 16–22, Sep 2021.

[23] Y. Kim, T. Wang, D. Xiong, X. Wang, and S. Park, “Multiple instance neural networks based

on sparse attention for cancer detection using t-cell receptor sequences,” BMC Bioinformatics,

vol. 23, no. 1, 2022.

[24] J. Ostmeyer, S. Christley, I. T. Toby, and L. G. Cowell, “Biophysicochemical motifs in t-cell

receptor sequences distinguish repertoires from tumor-infiltrating lymphocyte and adjacent

healthy tissue,” Cancer Research, vol. 79, no. 7, p. 1671–1680, 2019.

[25] W. R. Atchley, J. Zhao, A. D. Fernandes, and T. Drüke, “Solving the protein sequence metric

problem,” Proceedings of the National Academy of Sciences, vol. 102, p. 6395–6400, Apr 2005.

[26] A. Kidera, Y. Konishi, M. Oka, T. Ooi, and H. A. Scheraga, “Statistical analysis of the

physical properties of the 20 naturally occurring amino acids,” Journal of Protein Chemistry,

vol. 4, p. 23–55, Feb 1985.

72

[27] Y. Elhanati, Z. Sethna, Q. Marcou, C. G. Callan, T. Mora, and A. M. Walczak, “Inferring pro-

cesses underlying b-cell repertoire diversity,” Philosophical Transactions of the Royal Society

B: Biological Sciences, vol. 370, p. 20140243, Sept. 2015.

[28] L. Li, Y. Nagano, and B. Chain, “Identifying conserved tcr beta chain motifs through a data-

driven approach: A novel approach using sentencepiece.” UCL Dissertations (Internal), Apr

2023.

[29] A. Madani, B. Krause, E. R. Greene, S. Subramanian, B. P. Mohr, J. M. Holton, J. L. Olmos,

C. Xiong, Z. Z. Sun, R. Socher, and et al., “Large language models generate functional protein

sequences across diverse families,” Nature Biotechnology, vol. 41, no. 8, p. 1099–1106, 2023.

[30] N. Ferruz, S. Schmidt, and B. Höcker, “Protgpt2 is a deep unsupervised language model for

protein design,” Nature Communications, vol. 13, no. 1, 2022.

[31] M. E. Zaslavsky, E. Craig, J. K. Michuda, N. Ram-Mohan, J.-Y. Lee, K. D. Nguyen, R. A.

Hoh, T. D. Pham, E. S. Parsons, S. R. Macwana, and et al., “Disease diagnostics using

machine learning of immune receptors,” Disease diagnostics using machine learning of immune

receptors, Apr 2022.

[32] K. Wu, K. E. Yost, B. Daniel, J. A. Belk, Y. Xia, T. Egawa, A. Satpathy, H. Y. Chang,

and J. Zou, “Tcr-bert: learning the grammar of t-cell receptors for flexible antigen-xbinding

analyses,” TCR-Bert: Learning the grammar of T-cell receptors for flexible antigen-xbinding

analyses, Nov 2021.

[33] J. Glanville, H. Huang, A. Nau, O. Hatton, L. E. Wagar, F. Rubelt, X. Ji, A. Han, S. M.

Krams, C. Pettus, and et al., “Identifying specificity groups in the t cell receptor repertoire,”

Nature, vol. 547, no. 7661, p. 94–98, 2017.

[34] T. Kudo and J. Richardson, “Sentencepiece: A simple and language independent subword

tokenizer and detokenizer for neural text processing,” 2018.

[35] D. Ofer, N. Brandes, and M. Linial, “The language of proteins: Nlp, machine learning &

protein sequences,” Computational and Structural Biotechnology Journal, vol. 19, pp. 1750–

1758, 2021.

[36] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvu-

nakool, R. Bates, A. Ž́ıdek, A. Potapenko, and et al., “Highly accurate protein structure

prediction with alphafold,” Nature, vol. 596, no. 7873, p. 583–589, 2021.

[37] J. H. Wilson and T. Hunt, Molecular biology of the cell, 4th edition: A problems approach.

Garland Science, 2002.

[38] N. Thomas, K. Best, M. Cinelli, S. Reich-Zeliger, H. Gal, E. Shifrut, A. Madi, N. Friedman,

J. Shawe-Taylor, and B. Chain, “Tracking global changes induced in the cd4 t cell receptor

repertoire by immunization with a complex antigen using short stretches of cdr3 protein

sequence.,” Bioinformatics, vol. 30, p. 3181–3188, Nov 2014.

[39] K. Joshi, M. R. de Massy, M. Ismail, J. L. Reading, I. Uddin, A. Woolston, E. Hatipoglu,

T. Oakes, R. Rosenthal, T. Peacock, and et al., “Spatial heterogeneity of the t cell recep-

tor repertoire reflects the mutational landscape in lung cancer,” Nature Medicine, vol. 25,

p. 1549–1559, Oct 2019.

73

[40] C. Krishna, D. Chowell, M. Gönen, Y. Elhanati, and T. A. Chan, “Genetic and environmental

determinants of human tcr repertoire diversity,” Immunity & Ageing, vol. 17, Sep 2020.

[41] Z. Zhang, Y. Feng, S. Ying, and Y. Gao, “Deep hypergraph structure learning,” 2022.

[42] C. Gote, V. Perri, and I. Scholtes, “Predicting influential higher-order patterns in temporal

network data,” 2022.

[43] S. Kawashima, H. Ogata, and M. Kanehisa, “Aaindex: Amino acid index database,” Nucleic

Acids Research, vol. 27, p. 368–369, Jan 1999.

[44] Z. Zhang, D. Xiong, X. Wang, H. Liu, and T. Wang, “Mapping the functional landscape of t

cell receptor repertoires by single-t cell transcriptomics,” Nature Methods, vol. 18, p. 92–99,

Jan 2021.

[45] F. Bieberich and S. T. Reddy, “The unexpected benefit of tcr cross-reactivity in cancer im-

munotherapy,” Cancer Research, vol. 83, no. 19, p. 3168–3169, 2023.

[46] A. F. T. Martins and R. F. Astudillo, “From softmax to sparsemax: A sparse model of

attention and multi-label classification,” 2016.

[47] Z. Zhang, D. Xiong, X. Wang, H. Liu, and T. Wang, “Mapping the functional landscape of t

cell receptor repertoires by single-t cell transcriptomics,” Nature Methods, vol. 18, p. 92–99,

Jan 2021.

[48] OpenAI, “Chat generative pre-trained transformer (chatgpt).” https://openai.com/blog/

chatgpt, 2022. Accessed: 2024-01-10.

[49] V. Ramanujan, T. Nguyen, S. Oh, L. Schmidt, and A. Farhadi, “On the connection between

pre-training data diversity and fine-tuning robustness,” 2023.

[50] Z. Liu, Y. Xu, Y. Xu, Q. Qian, H. Li, X. Ji, A. Chan, and R. Jin, “Improved fine-tuning by

better leveraging pre-training data,” 2022.

[51] N. Ding, Y. Qin, G. Yang, F. Wei, Z. Yang, Y. Su, S. Hu, Y. Chen, C.-M. Chan, W. Chen,

and et al., “Parameter-efficient fine-tuning of large-scale pre-trained language models,” Nature

Machine Intelligence, vol. 5, no. 3, p. 220–235, 2023.

[52] K. You, Y. Liu, Z. Zhang, J. Wang, M. I. Jordan, and M. Long, “Ranking and tuning pre-

trained models: A new paradigm for exploiting model hubs,” 2022.

[53] Z. Chen, W. K. Wong, Z. Zhong, J. Liao, and Y. Qu, “Effective transfer of pretrained large

visual model for fabric defect segmentation via specifc knowledge injection,” 2023.

[54] V. Srinivasan, N. Strodthoff, J. Ma, A. Binder, K.-R. Müller, and W. Samek, “To pretrain

or not? a systematic analysis of the benefits of pretraining in diabetic retinopathy,” PLOS

ONE, vol. 17, no. 10, 2022.

[55] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,

P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Es-

iobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn,

S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev,

P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet,

74

https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt

T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Sal-

adi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor,

A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang,

A. Rodriguez, R. Stojnic, S. Edunov, and T. Scialom, “Llama 2: Open foundation and fine-

tuned chat models,” 2023.

[56] Y. Li, Z. Li, K. Zhang, R. Dan, S. Jiang, and Y. Zhang, “Chatdoctor: A medical chat model

fine-tuned on a large language model meta-ai (llama) using medical domain knowledge,” 2023.

[57] Google DeepMind, “Gemini: A family of highly capable multimodal models,” Technical Re-

port, Google DeepMind, December 2023. [Online; accessed 7-December-2023].

[58] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional

transformers for language understanding,” 2019.

[59] M. Shugay, D. V. Bagaev, I. V. Zvyagin, R. M. Vroomans, J. C. Crawford, G. Dolton, E. A.

Komech, A. L. Sycheva, A. E. Koneva, E. S. Egorov, and et al., “Vdjdb: A curated database

of t-cell receptor sequences with known antigen specificity,” Nucleic Acids Research, vol. 46,

no. D1, 2017.

[60] W. Zhang, L. Wang, K. Liu, X. Wei, K. Yang, W. Du, S. Wang, N. Guo, C. Ma, L. Luo, and

et al., “Pird: Pan immune repertoire database,” Bioinformatics, vol. 36, no. 3, p. 897–903,

2019.

[61] Z. Lin, H. Akin, R. Rao, B. Hie, Z. Zhu, W. Lu, N. Smetanin, R. Verkuil, O. Kabeli,

Y. Shmueli, and et al., “Evolutionary-scale prediction of atomic-level protein structure with

a language model,” Science, vol. 379, no. 6637, p. 1123–1130, 2023.

[62] R. Rao, N. Bhattacharya, N. Thomas, Y. Duan, X. Chen, J. Canny, P. Abbeel, and Y. S.

Song, “Evaluating protein transfer learning with tape,” 2019.

[63] V. A. Traag, L. Waltman, and N. J. van Eck, “From louvain to leiden: guaranteeing well-

connected communities,” Scientific Reports, vol. 9, Mar. 2019.

[64] M. Jamal-Hanjani, A. Hackshaw, Y. Ngai, J. Shaw, C. Dive, S. Quezada, G. Middleton,

E. de Bruin, J. Le Quesne, S. Shafi, and et al., “Tracking genomic cancer evolution for precision

medicine: The lung tracerx study,” PLoS Biology, vol. 12, Jul 2014.

[65] M. Milighetti, Y. Peng, C. Tan, M. Mark, G. Nageswaran, S. Byrne, T. Ronel, T. Peacock,

A. Mayer, A. Chandran, and et al., “Large clones of pre-existing t cells drive early immunity

against sars-cov-2 and lcmv infection,” iScience, vol. 26, p. 106937, Jun 2023.

[66] E. Shaw, “Variation in t cell immunity in health,” Dec 2022.

[67] Y. Nagano and B. Chain, “tidytcells: standardizer for tr/mh nomenclature,” Frontiers in

Immunology, vol. 14, 2023.

[68] E. Rosati, C. M. Dowds, E. Liaskou, E. K. Henriksen, T. H. Karlsen, and A. Franke, “Overview

of methodologies for t-cell receptor repertoire analysis,” BMC Biotechnology, vol. 17, Jul 2017.

[69] H. Tanno, T. M. Gould, J. R. McDaniel, W. Cao, Y. Tanno, R. E. Durrett, D. Park, S. J.

Cate, W. H. Hildebrand, C. L. Dekker, and et al., “Determinants governing t cell recep-

75

tor alpha/beta-chain pairing in repertoire formation of identical twins,” Proceedings of the

National Academy of Sciences, vol. 117, p. 532–540, Dec 2019.

[70] Y. Huang, J. Xu, Z. Jiang, J. Lai, Z. Li, Y. Yao, T. Chen, L. Yang, Z. Xin, and X. Ma,

“Advancing transformer architecture in long-context large language models: A comprehensive

survey,” 2023.

[71] J. Pfeiffer, I. Vulić, I. Gurevych, and S. Ruder, “MAD-X: An Adapter-Based Framework

for Multi-Task Cross-Lingual Transfer,” in Proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing (EMNLP) (B. Webber, T. Cohn, Y. He, and Y. Liu,

eds.), (Online), pp. 7654–7673, Association for Computational Linguistics, Nov. 2020.

[72] A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzmán, E. Grave,

M. Ott, L. Zettlemoyer, and V. Stoyanov, “Unsupervised cross-lingual representation learning

at scale,” in Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics (D. Jurafsky, J. Chai, N. Schluter, and J. Tetreault, eds.), (Online), pp. 8440–

8451, Association for Computational Linguistics, July 2020.

[73] A. Ansell, E. M. Ponti, A. Korhonen, and I. Vulić, “Composable sparse fine-tuning for cross-

lingual transfer,” 2023.

[74] Y. Chen, K. Marchisio, R. Raileanu, D. I. Adelani, P. Stenetorp, S. Riedel, and M. Artetxe,

“Improving language plasticity via pretraining with active forgetting,” 2024.

[75] B. U. Tayyab and N. Chua, “Pre-training transformers for domain adaptation,” 2021.

[76] D. Hendrycks, K. Lee, and M. Mazeika, “Using pre-training can improve model robustness

and uncertainty,” 2019.

[77] D. Kim, K. Wang, S. Sclaroff, and K. Saenko, “A broad study of pre-training for domain

generalization and adaptation,” 2022.

[78] S. Gururangan, A. Marasović, S. Swayamdipta, K. Lo, I. Beltagy, D. Downey, and N. A.

Smith, “Don’t stop pretraining: Adapt language models to domains and tasks,” 2020.

[79] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in deep neural

networks?,” 2014.

[80] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document

recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[81] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” 2013.

[82] N. F. Liu, M. Gardner, Y. Belinkov, M. E. Peters, and N. A. Smith, “Linguistic knowledge

and transferability of contextual representations,” in Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers) (J. Burstein, C. Doran, and T. Solorio,

eds.), (Minneapolis, Minnesota), pp. 1073–1094, Association for Computational Linguistics,

June 2019.

[83] A. Tamkin, T. Singh, D. Giovanardi, and N. Goodman, “Investigating transferability in

pretrained language models,” in Findings of the Association for Computational Linguistics:

76

EMNLP 2020 (T. Cohn, Y. He, and Y. Liu, eds.), (Online), pp. 1393–1401, Association for

Computational Linguistics, Nov. 2020.

[84] H. Zhao, H. Chen, F. Yang, N. Liu, H. Deng, H. Cai, S. Wang, D. Yin, and M. Du, “Explain-

ability for large language models: A survey,” 2023.

[85] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017.

[86] T. Huang, Y. Shu, and Y.-D. Cai, “Genetic differences among ethnic groups,” BMC Genomics,

vol. 16, Dec 2015.

[87] A. Sharma-Oates, D. T. Zemedikun, K. Kumar, J. A. Reynolds, A. Jain, K. Raza, J. A.

Williams, L. Bravo, V. R. Cardoso, G. Gkoutos, and et al., “Early onset of immune-mediated

diseases in minority ethnic groups in the uk,” BMC Medicine, vol. 20, Oct 2022.

[88] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, “Lora:

Low-rank adaptation of large language models,” 2021.

[89] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “Qlora: Efficient finetuning of

quantized llms,” 2023.

[90] National Cancer Institute, “Age associated risk with cancer; https://www.cancer.gov/about-

cancer/causes-prevention/risk/age,” Mar 2021.

[91] United Kingdom Cancer Research, “Family history and inherited cancer genes;

https://www.cancerresearchuk.org/about-cancer/causes-of-cancer/inherited-cancer-genes-

and-increased-cancer-risk/family-history-and-inherited-cancer-genes,” Nov 2021.

[92] W. B. Johnson and J. Lindenstrauss, “Extensions of lipschitz mappings into hilbert space,”

Contemporary mathematics, vol. 26, pp. 189–206, 1984.

[93] M. Mendel, “A simple proof of the johnson–lindenstrauss extension theorem,” The American

Mathematical Monthly, vol. 126, p. 838–840, Oct. 2019.

77

	Executive Summary
	Introduction
	T Cells
	Representing T Cells Numerically
	Research Aims
	Report Structure

	Context & Related Works
	The Protein Language
	TCR Sequence Frequency Analysis
	Deep Learning on Physico-Chemical Properties
	MINN-SA

	Transfer Learning
	Domain Mismatch
	Pre-Trained Models
	TCR-BERT

	Methodology & Results
	Data Processing
	Training data
	Data Cleaning
	SCEPTR
	Symbolic Encodings
	Subsymbolic Encoding

	Model Design
	Subsymbolic Encoding Downstream Model
	Symbolic Encoding Downstream Model

	Experimental Layout
	Training Environment
	Hyperparameters

	Results
	Evaluation Set

	Discussion
	Achievements
	Symbolic Encoding's Lack of Expressivity
	Novelty

	Interpretability
	Predictive T Cell Receptors
	Component Similarity

	Limitations
	Data Limitations
	Quality of Embedding Space
	Computational Resources

	Future Works
	Fine Tuning Encoding Models
	Patient Data
	Model Verification
	Usage of TCR-BERT
	Autoencoders for symbolic encodings

	Conclusions
	Summary of Achievements
	Summary of Future Works

	Figures & Tables
	Train-Test Split
	TCR-BERT
	SCEPTR
	Atchley Factors
	Kidera Factors
	Amino Acid Properties
	Random Embedding

	Evaluation Set (SCEPTR)
	Interpretability
	Positively Predictive TCRs
	Negatively Predictive TCRs
	Similarity

	GitHub Repository
	Bibliography

